Cargando…
Learning “graph-mer” Motifs that Predict Gene Expression Trajectories in Development
A key problem in understanding transcriptional regulatory networks is deciphering what cis regulatory logic is encoded in gene promoter sequences and how this sequence information maps to expression. A typical computational approach to this problem involves clustering genes by their expression profi...
Autores principales: | Li, Xuejing, Panea, Casandra, Wiggins, Chris H., Reinke, Valerie, Leslie, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861633/ https://www.ncbi.nlm.nih.gov/pubmed/20454681 http://dx.doi.org/10.1371/journal.pcbi.1000761 |
Ejemplares similares
-
Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach
por: Anwar, Firoz, et al.
Publicado: (2008) -
MicroRNA categorization using sequence motifs and k-mers
por: Yousef, Malik, et al.
Publicado: (2017) -
Functional reconstitution of the MERS CoV receptor binding motif
por: Uppalapati, Lakshminarasaiah, et al.
Publicado: (2022) -
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
por: Kong, Wei, et al.
Publicado: (2021) -
Graph-based Fusion Modeling and Explanation for Disease Trajectory Prediction
por: Tariq, Amara, et al.
Publicado: (2022)