Cargando…

TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

BACKGROUND: One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a pi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zoppoli, Pietro, Morganella, Sandro, Ceccarelli, Michele
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862045/
https://www.ncbi.nlm.nih.gov/pubmed/20338053
http://dx.doi.org/10.1186/1471-2105-11-154
_version_ 1782180693440200704
author Zoppoli, Pietro
Morganella, Sandro
Ceccarelli, Michele
author_facet Zoppoli, Pietro
Morganella, Sandro
Ceccarelli, Michele
author_sort Zoppoli, Pietro
collection PubMed
description BACKGROUND: One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. RESULTS: In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo assessment of reverse engineering algorithms. Our results are compared with ARACNE itself and with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and F-score for the network reconstruction task. CONCLUSIONS: Here we report the adaptation of the ARACNE algorithm to infer gene regulatory networks from time-course data, so that, the resulting network is represented as a directed graph. The proposed algorithm is expected to be useful in reconstruction of small biological directed networks from time course data.
format Text
id pubmed-2862045
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28620452010-05-01 TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach Zoppoli, Pietro Morganella, Sandro Ceccarelli, Michele BMC Bioinformatics Methodology article BACKGROUND: One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. RESULTS: In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo assessment of reverse engineering algorithms. Our results are compared with ARACNE itself and with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and F-score for the network reconstruction task. CONCLUSIONS: Here we report the adaptation of the ARACNE algorithm to infer gene regulatory networks from time-course data, so that, the resulting network is represented as a directed graph. The proposed algorithm is expected to be useful in reconstruction of small biological directed networks from time course data. BioMed Central 2010-03-25 /pmc/articles/PMC2862045/ /pubmed/20338053 http://dx.doi.org/10.1186/1471-2105-11-154 Text en Copyright ©2010 Zoppoli et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology article
Zoppoli, Pietro
Morganella, Sandro
Ceccarelli, Michele
TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title_full TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title_fullStr TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title_full_unstemmed TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title_short TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
title_sort timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach
topic Methodology article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862045/
https://www.ncbi.nlm.nih.gov/pubmed/20338053
http://dx.doi.org/10.1186/1471-2105-11-154
work_keys_str_mv AT zoppolipietro timedelayaracnereverseengineeringofgenenetworksfromtimecoursedatabyaninformationtheoreticapproach
AT morganellasandro timedelayaracnereverseengineeringofgenenetworksfromtimecoursedatabyaninformationtheoreticapproach
AT ceccarellimichele timedelayaracnereverseengineeringofgenenetworksfromtimecoursedatabyaninformationtheoreticapproach