Cargando…
Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei
Nuclear DBF-2-related (NDR) kinases are essential regulators of cell cycle progression, growth, and development in many organisms and are activated by the binding of an Mps One Binder (MOB) protein partner, autophosphorylation, and phosphorylation by an upstream STE20 family kinase. In the protozoan...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865264/ https://www.ncbi.nlm.nih.gov/pubmed/20231285 http://dx.doi.org/10.1074/jbc.M109.074591 |
_version_ | 1782180830378983424 |
---|---|
author | Ma, Jiangtao Benz, Corinna Grimaldi, Raffaella Stockdale, Christopher Wyatt, Paul Frearson, Julie Hammarton, Tansy C. |
author_facet | Ma, Jiangtao Benz, Corinna Grimaldi, Raffaella Stockdale, Christopher Wyatt, Paul Frearson, Julie Hammarton, Tansy C. |
author_sort | Ma, Jiangtao |
collection | PubMed |
description | Nuclear DBF-2-related (NDR) kinases are essential regulators of cell cycle progression, growth, and development in many organisms and are activated by the binding of an Mps One Binder (MOB) protein partner, autophosphorylation, and phosphorylation by an upstream STE20 family kinase. In the protozoan parasite, Trypanosoma brucei, the causative agent of human African trypanosomiasis, the NDR kinase, PK50, is expressed in proliferative life cycle stages and was shown to complement a yeast NDR kinase mutant cell line. However, the function of PK50 and a second NDR kinase, PK53, in T. brucei has not been determined to date, although trypanosome MOB1 is known to be essential for cytokinesis, suggesting the NDR kinases may also be involved in this process. Here, we show that specific depletion of PK50 or PK53 from bloodstream stage trypanosomes resulted in the rapid accumulation of cells with two nuclei and two kinetoplasts, indicating that cytokinesis was specifically inhibited. This led to a deregulation of the cell cycle and cell death and provides genetic validation of these kinases as potential novel drug targets for human African trypanosomiasis. Recombinant active PK50 and PK53 were produced and biochemically characterized. Both enzymes autophosphorylated, were able to trans-phosphorylate generic kinase substrates in vitro, and were active in the absence of phosphorylation by an upstream kinase. Additionally, both enzymes were active in the absence of MOB1 binding, which was also demonstrated to likely be a feature of the kinases in vivo. Biochemical characterization of recombinant PK50 and PK53 has revealed key kinetic differences between them, and the identification of in vitro peptide substrates in this study paves the way for high throughput inhibitor screening of these kinases. |
format | Text |
id | pubmed-2865264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-28652642010-05-11 Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei Ma, Jiangtao Benz, Corinna Grimaldi, Raffaella Stockdale, Christopher Wyatt, Paul Frearson, Julie Hammarton, Tansy C. J Biol Chem Cell Biology Nuclear DBF-2-related (NDR) kinases are essential regulators of cell cycle progression, growth, and development in many organisms and are activated by the binding of an Mps One Binder (MOB) protein partner, autophosphorylation, and phosphorylation by an upstream STE20 family kinase. In the protozoan parasite, Trypanosoma brucei, the causative agent of human African trypanosomiasis, the NDR kinase, PK50, is expressed in proliferative life cycle stages and was shown to complement a yeast NDR kinase mutant cell line. However, the function of PK50 and a second NDR kinase, PK53, in T. brucei has not been determined to date, although trypanosome MOB1 is known to be essential for cytokinesis, suggesting the NDR kinases may also be involved in this process. Here, we show that specific depletion of PK50 or PK53 from bloodstream stage trypanosomes resulted in the rapid accumulation of cells with two nuclei and two kinetoplasts, indicating that cytokinesis was specifically inhibited. This led to a deregulation of the cell cycle and cell death and provides genetic validation of these kinases as potential novel drug targets for human African trypanosomiasis. Recombinant active PK50 and PK53 were produced and biochemically characterized. Both enzymes autophosphorylated, were able to trans-phosphorylate generic kinase substrates in vitro, and were active in the absence of phosphorylation by an upstream kinase. Additionally, both enzymes were active in the absence of MOB1 binding, which was also demonstrated to likely be a feature of the kinases in vivo. Biochemical characterization of recombinant PK50 and PK53 has revealed key kinetic differences between them, and the identification of in vitro peptide substrates in this study paves the way for high throughput inhibitor screening of these kinases. American Society for Biochemistry and Molecular Biology 2010-05-14 2010-03-15 /pmc/articles/PMC2865264/ /pubmed/20231285 http://dx.doi.org/10.1074/jbc.M109.074591 Text en © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Cell Biology Ma, Jiangtao Benz, Corinna Grimaldi, Raffaella Stockdale, Christopher Wyatt, Paul Frearson, Julie Hammarton, Tansy C. Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title | Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title_full | Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title_fullStr | Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title_full_unstemmed | Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title_short | Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei |
title_sort | nuclear dbf-2-related kinases are essential regulators of cytokinesis in bloodstream stage trypanosoma brucei |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865264/ https://www.ncbi.nlm.nih.gov/pubmed/20231285 http://dx.doi.org/10.1074/jbc.M109.074591 |
work_keys_str_mv | AT majiangtao nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT benzcorinna nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT grimaldiraffaella nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT stockdalechristopher nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT wyattpaul nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT frearsonjulie nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei AT hammartontansyc nucleardbf2relatedkinasesareessentialregulatorsofcytokinesisinbloodstreamstagetrypanosomabrucei |