Cargando…
Knowledge-guided gene ranking by coordinative component analysis
BACKGROUND: In cancer, gene networks and pathways often exhibit dynamic behavior, particularly during the process of carcinogenesis. Thus, it is important to prioritize those genes that are strongly associated with the functionality of a network. Traditional statistical methods are often inept to id...
Autores principales: | Wang, Chen, Xuan, Jianhua, Li, Huai, Wang, Yue, Zhan, Ming, Hoffman, Eric P, Clarke, Robert |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865494/ https://www.ncbi.nlm.nih.gov/pubmed/20353603 http://dx.doi.org/10.1186/1471-2105-11-162 |
Ejemplares similares
-
Knowledge-guided multi-scale independent component analysis for biomarker identification
por: Chen, Li, et al.
Publicado: (2008) -
Motif-guided sparse decomposition of gene expression data for regulatory module identification
por: Gong, Ting, et al.
Publicado: (2011) -
Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks
por: Tian, Ye, et al.
Publicado: (2014) -
caBIG™ VISDA: Modeling, visualization, and discovery for cluster analysis of genomic data
por: Zhu, Yitan, et al.
Publicado: (2008) -
Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
por: Gong, Ting, et al.
Publicado: (2008)