Cargando…
A highly efficient multi-core algorithm for clustering extremely large datasets
BACKGROUND: In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need...
Autores principales: | Kraus, Johann M, Kestler, Hans A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865495/ https://www.ncbi.nlm.nih.gov/pubmed/20370922 http://dx.doi.org/10.1186/1471-2105-11-169 |
Ejemplares similares
-
RAFTS(3)G: an efficient and versatile clustering software to analyses in large protein datasets
por: de Lima Nichio, Bruno Thiago, et al.
Publicado: (2019) -
clusterMaker: a multi-algorithm clustering plugin for Cytoscape
por: Morris, John H, et al.
Publicado: (2011) -
Efficient analysis of large datasets and sex bias with ADMIXTURE
por: Shringarpure, Suyash S., et al.
Publicado: (2016) -
A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets
por: Sharma, Ashok, et al.
Publicado: (2009) -
Copynumber: Efficient algorithms for single- and multi-track copy number segmentation
por: Nilsen, Gro, et al.
Publicado: (2012)