Cargando…
A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies
Gene expression measurements are influenced by a wide range of factors, such as the state of the cell, experimental conditions and variants in the sequence of regulatory regions. To understand the effect of a variable of interest, such as the genotype of a locus, it is important to account for varia...
Autores principales: | Stegle, Oliver, Parts, Leopold, Durbin, Richard, Winn, John |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865505/ https://www.ncbi.nlm.nih.gov/pubmed/20463871 http://dx.doi.org/10.1371/journal.pcbi.1000770 |
Ejemplares similares
-
Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes
por: Parts, Leopold, et al.
Publicado: (2011) -
Meta-eQTL: a tool set for flexible eQTL meta-analysis
por: Di Narzo, Antonio Fabio, et al.
Publicado: (2014) -
The Power of Single-Cell RNA Sequencing in eQTL Discovery
por: Maria, Maleeha, et al.
Publicado: (2022) -
A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules
por: Zhang, Wei, et al.
Publicado: (2010) -
Power, false discovery rate and Winner’s Curse in eQTL studies
por: Huang, Qin Qin, et al.
Publicado: (2018)