Cargando…
Spectral Signature Generalization and Expansion Can Improve the Accuracy of Satellite Image Classification
Conventional supervised classification of satellite images uses a single multi-band image and coincident ground observations to construct spectral signatures of land cover classes. We compared this approach with three alternatives that derive signatures from multiple images and time periods: (1) sig...
Autores principales: | Laborte, Alice G., Maunahan, Aileen A., Hijmans, Robert J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865537/ https://www.ncbi.nlm.nih.gov/pubmed/20463895 http://dx.doi.org/10.1371/journal.pone.0010516 |
Ejemplares similares
-
Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images
por: Knauer, Uwe, et al.
Publicado: (2017) -
Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks
por: Illarionova, Svetlana, et al.
Publicado: (2021) -
Improving the Accuracy of Saffron Adulteration Classification and Quantification through Data Fusion of Thin-Layer Chromatography Imaging and Raman Spectral Analysis
por: Dai, Haochen, et al.
Publicado: (2023) -
Image Fusion for High-Resolution Optical Satellites Based on Panchromatic Spectral Decomposition
por: He, Luxiao, et al.
Publicado: (2019) -
Improved image classification explainability with high-accuracy heatmaps
por: Preechakul, Konpat, et al.
Publicado: (2022)