Cargando…
MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia
Progranulin deficiency is thought to cause some forms of frontotemporal dementia (FTD), a major early-onset age-dependent neurodegenerative disease. How progranulin (PGRN) expression is regulated is largely unknown. We identified an evolutionarily conserved binding site for microRNA-29b (miR-29b) in...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866661/ https://www.ncbi.nlm.nih.gov/pubmed/20479936 http://dx.doi.org/10.1371/journal.pone.0010551 |
Sumario: | Progranulin deficiency is thought to cause some forms of frontotemporal dementia (FTD), a major early-onset age-dependent neurodegenerative disease. How progranulin (PGRN) expression is regulated is largely unknown. We identified an evolutionarily conserved binding site for microRNA-29b (miR-29b) in the 3′ untranslated region (3′UTR) of the human PGRN (hPGRN) mRNA. miR-29b downregulates the expression of luciferase through hPGRN or mouse PGRN (mPGRN) 3′UTRs, and the regulation was abolished by mutations in the miR-29b binding site. To examine the direct effect of manipulating endogenous miR-29b on hPGRN expression, we established a stable NIH3T3 cell line that expresses hPGRN under the control of the cytomegalovirus promoter. Ectopic expression of miR-29b decreased hPGRN expression at the both mRNA and protein levels. Conversely, knockdown of endogenous miR-29b with locked nucleic acid increased the production and secretion of hPGRN in NIH3T3 cells. Endogenous hPGRN in HEK 293 cells was also regulated by miR-29b. These findings identify miR-29b as a novel posttranscriptional regulator of PGRN expression, raising the possibility that miR-29b or other miRNAs might be targeted therapeutically to increase hPGRN levels in some FTD patients. |
---|