Cargando…

G-CSF, rt-PA and combination therapy after experimental thromboembolic stroke

BACKGROUND: Granulocyte Colony-Stimulating Factor (G-CSF) has remarkable neuroprotective properties. Due to its proven safety profile, G-CSF is currently used in clinical stroke trials. As neuroprotectants are considered to be more effective in the early phase of cerebral ischemia and during reperfu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kollmar, Rainer, Henninger, Nils, Urbanek, Christian, Schwab, Stefan
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868804/
https://www.ncbi.nlm.nih.gov/pubmed/20388227
http://dx.doi.org/10.1186/2040-7378-2-9
Descripción
Sumario:BACKGROUND: Granulocyte Colony-Stimulating Factor (G-CSF) has remarkable neuroprotective properties. Due to its proven safety profile, G-CSF is currently used in clinical stroke trials. As neuroprotectants are considered to be more effective in the early phase of cerebral ischemia and during reperfusion, G-CSF should to be tested in combination with thrombolysis. Therefore, combination therapy was investigated in an experimental model of thromboembolic stroke. METHODS: Male Wistar rats (n = 72) were subjected to a model of thromboembolic occlusion (TE) of the middle cerebral artery. Different groups (n = 12 each) treated by recombinant tissue-plasminogen activator (rt-PA) or/and G-CSF: group control (control), group early G-CSF (G-CSF 60 min after TE), group rt-PA (rt-PA 60 min after TE), group com (combination rt-PA/G-CSF), group delayed rt-PA (rt-PA after 180 min), group deco (G-CSF after 60 min, rt-PA after 180 min). Animals were investigated by magnetic resonance imaging (MRI) and silver infarct staining (SIS) 24 hours after TE. RESULTS: Early G-CSF or rt-PA reduced the infarct size compared to all groups (p < 0.05 to p < 0.01) with the exception of group com, (p = n.s.) as measured by T2, DWI, and SIS. Late administration of rt-PA lead to high mortality and larger infarcts compared to all other groups (p < 0.05 to p < 0.01). Pre-treatment by G-CSF (deco) reduced infarct site compared to delayed rt-PA treatment (p < 0.05). G-CSF did not significantly influence PWI when combined with rt-PA. All animals treated by rt-PA showed improved parameters in PWI indicating reperfusion. CONCLUSIONS: G-CSF was neuroprotective when given early after TE. Early combination with rt-PA showed no additional benefit compared to rt-PA or G-CSF alone, but did not lead to side effects. Pretreatment by G-CSF was able to reduce deleterious effects of late rt-PA treatment.