Cargando…
ParaSAM: a parallelized version of the significance analysis of microarrays algorithm
Motivation: Significance analysis of microarrays (SAM) is a widely used permutation-based approach to identifying differentially expressed genes in microarray datasets. While SAM is freely available as an Excel plug-in and as an R-package, analyses are often limited for large datasets due to very hi...
Autores principales: | Sharma, Ashok, Zhao, Jieping, Podolsky, Robert, McIndoe, Richard A. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872005/ https://www.ncbi.nlm.nih.gov/pubmed/20400455 http://dx.doi.org/10.1093/bioinformatics/btq161 |
Ejemplares similares
-
ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory use
por: Kraj, Piotr, et al.
Publicado: (2008) -
A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets
por: Sharma, Ashok, et al.
Publicado: (2009) -
LevioSAM: fast lift-over of variant-aware reference alignments
por: Mun, Taher, et al.
Publicado: (2021) -
MP-LAMP: parallel detection of statistically significant multi-loci markers on cloud platforms
por: Yoshizoe, Kazuki, et al.
Publicado: (2018) -
Exploiting parallelization in positional Burrows–Wheeler transform (PBWT) algorithms for efficient haplotype matching and compression
por: Wertenbroek, Rick, et al.
Publicado: (2023)