Cargando…
Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons
Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived ne...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872647/ https://www.ncbi.nlm.nih.gov/pubmed/20502524 http://dx.doi.org/10.1371/journal.pbio.1000373 |
_version_ | 1782181244129247232 |
---|---|
author | Heinrich, Christophe Blum, Robert Gascón, Sergio Masserdotti, Giacomo Tripathi, Pratibha Sánchez, Rodrigo Tiedt, Steffen Schroeder, Timm Götz, Magdalena Berninger, Benedikt |
author_facet | Heinrich, Christophe Blum, Robert Gascón, Sergio Masserdotti, Giacomo Tripathi, Pratibha Sánchez, Rodrigo Tiedt, Steffen Schroeder, Timm Götz, Magdalena Berninger, Benedikt |
author_sort | Heinrich, Christophe |
collection | PubMed |
description | Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation. |
format | Text |
id | pubmed-2872647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28726472010-05-25 Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons Heinrich, Christophe Blum, Robert Gascón, Sergio Masserdotti, Giacomo Tripathi, Pratibha Sánchez, Rodrigo Tiedt, Steffen Schroeder, Timm Götz, Magdalena Berninger, Benedikt PLoS Biol Research Article Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation. Public Library of Science 2010-05-18 /pmc/articles/PMC2872647/ /pubmed/20502524 http://dx.doi.org/10.1371/journal.pbio.1000373 Text en Heinrich et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Heinrich, Christophe Blum, Robert Gascón, Sergio Masserdotti, Giacomo Tripathi, Pratibha Sánchez, Rodrigo Tiedt, Steffen Schroeder, Timm Götz, Magdalena Berninger, Benedikt Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title | Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title_full | Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title_fullStr | Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title_full_unstemmed | Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title_short | Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons |
title_sort | directing astroglia from the cerebral cortex into subtype specific functional neurons |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872647/ https://www.ncbi.nlm.nih.gov/pubmed/20502524 http://dx.doi.org/10.1371/journal.pbio.1000373 |
work_keys_str_mv | AT heinrichchristophe directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT blumrobert directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT gasconsergio directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT masserdottigiacomo directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT tripathipratibha directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT sanchezrodrigo directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT tiedtsteffen directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT schroedertimm directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT gotzmagdalena directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons AT berningerbenedikt directingastrogliafromthecerebralcortexintosubtypespecificfunctionalneurons |