Cargando…

Polyphenol (-)-epigallocatechin gallate targeting myocardial reperfusion limits infarct size and improves cardiac function

BACKGROUND: This experiment was performed to determine the effect of polyphenolic (-)-epigallocatechin (EGCG), the most abundant catechin of green tea, given at reperfusion period. METHODS: Isolated rat hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. Green tea extract (G...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Chan Jin, Kim, Jin Mo, Lee, Seung Ryong, Jang, Young Ho, Kim, June Hong, Chun, Kook Jin
Formato: Texto
Lenguaje:English
Publicado: The Korean Society of Anesthesiologists 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872859/
https://www.ncbi.nlm.nih.gov/pubmed/20498796
http://dx.doi.org/10.4097/kjae.2010.58.2.169
Descripción
Sumario:BACKGROUND: This experiment was performed to determine the effect of polyphenolic (-)-epigallocatechin (EGCG), the most abundant catechin of green tea, given at reperfusion period. METHODS: Isolated rat hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. Green tea extract (GT) was perfused with the following concentrations; 0, 0.5, and 1 µM (GT-O, GT-0.5, and GT-1, respectively). In a next experiment, hearts were assigned randomly to one of the following groups; Control, EGCG-1 (1 µM of EGCG), and EGCG-10 (10 µM of EGCG). GT and EGCG were perfused for a period of 5 min before and 30 min after reperfusion. For comparison of cardioprotection among groups, morphometric measurement was performed by 2,3,5-triphenyltetrazolium chloride staning. RESULTS: GT 1 µM (10.3 ± 2.1%, P < 0.05) significantly reduced infarct volume as a percentage of ischemic volume compared to untreated hearts (27.4 ± 1.1%). EGCG 10 µM (13.2 ± 4.0%) significantly reduced myocardial infarction compared to control hearts (27.2 ± 1.4%, P = 0.002). After 2 h of reperfusion, cardiodynamic variables, including left ventricular developed pressure, rate-pressure produce, +dP/dt(max), and -dP/dt(min) were significantly improved by 10 µM of EGCG compared to control hearts (P = 0.01, 0.016, 0.009, and 0.019, respectively). CONCLUSIONS: EGCG treatment at an early reperfusion period reduces myocardial infarction and improves cardiodynamics in isolated rat hearts.