Cargando…
Gene ontology analysis for RNA-seq: accounting for selection bias
We present GOseq, an application for performing Gene Ontology (GO) analysis on RNA-seq data. GO analysis is widely used to reduce complexity and highlight biological processes in genome-wide expression studies, but standard methods give biased results on RNA-seq data due to over-detection of differe...
Autores principales: | Young, Matthew D, Wakefield, Matthew J, Smyth, Gordon K, Oshlack, Alicia |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872874/ https://www.ncbi.nlm.nih.gov/pubmed/20132535 http://dx.doi.org/10.1186/gb-2010-11-2-r14 |
Ejemplares similares
-
Transcript length bias in RNA-seq data confounds systems biology
por: Oshlack, Alicia, et al.
Publicado: (2009) -
Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips
por: Shi, Wei, et al.
Publicado: (2010) -
A scaling normalization method for differential expression analysis of RNA-seq data
por: Robinson, Mark D, et al.
Publicado: (2010) -
Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes
por: Oshlack, Alicia, et al.
Publicado: (2007) -
Slinker: Visualising novel splicing events in RNA-Seq data
por: Schmidt, Breon, et al.
Publicado: (2021)