Cargando…

The chemotherapeutic agent bortezomib induces the formation of stress granules

BACKGROUND: Cytoplasmic stress granules (SGs) are specialized storage sites of untranslated mRNAs whose formation occurs under different stress conditions and is often associated with cell survival. SGs-inducing stresses include radiations, hypoxia, viral infections, and chemical inhibitors of speci...

Descripción completa

Detalles Bibliográficos
Autores principales: Fournier, Marie-Josée, Gareau, Cristina, Mazroui, Rachid
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873330/
https://www.ncbi.nlm.nih.gov/pubmed/20429927
http://dx.doi.org/10.1186/1475-2867-10-12
Descripción
Sumario:BACKGROUND: Cytoplasmic stress granules (SGs) are specialized storage sites of untranslated mRNAs whose formation occurs under different stress conditions and is often associated with cell survival. SGs-inducing stresses include radiations, hypoxia, viral infections, and chemical inhibitors of specific translation initiation factors. The FDA-approved drug bortezomib (Velcade(®)) is a peptide boronate inhibitor of the 26S proteasome that is very efficient for the treatment of myelomas and other hematological tumors. Solid tumors are largely refractory to bortezomib. In the present study, we investigated the formation of SGs following bortezomib treatment. RESULTS: We show that bortezomib efficiently induces the formation of SGs in cancer cells. This process involves the phosphorylation of translation initiation factor eIF2α by heme-regulated inhibitor kinase (HRI). Depletion of HRI prevents bortezomib-induced formation of SGs and promotes apoptosis. CONCLUSIONS: This is the first study describing the formation of SGs by a chemotherapeutic compound. We speculate that the activation of HRI and the formation of SGs might constitute a mechanism by which cancer cells resist bortezomib-mediated apoptosis.