Cargando…

Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1maturation inhibitor bevirimat

BACKGROUND: The maturation inhibitor bevirimat (BVM) potently inhibits human immunodeficiency virus type 1 (HIV-1) replication by blocking capsid-spacer peptide 1 (CA-SP1) cleavage. Recent clinical trials demonstrated that a significant proportion of HIV-1-infected patients do not respond to BVM. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Adamson, Catherine S, Sakalian, Michael, Salzwedel, Karl, Freed, Eric O
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873507/
https://www.ncbi.nlm.nih.gov/pubmed/20406463
http://dx.doi.org/10.1186/1742-4690-7-36
Descripción
Sumario:BACKGROUND: The maturation inhibitor bevirimat (BVM) potently inhibits human immunodeficiency virus type 1 (HIV-1) replication by blocking capsid-spacer peptide 1 (CA-SP1) cleavage. Recent clinical trials demonstrated that a significant proportion of HIV-1-infected patients do not respond to BVM. A patient's failure to respond correlated with baseline polymorphisms at SP1 residues 6-8. RESULTS: In this study, we demonstrate that varying levels of BVM resistance are associated with point mutations at these residues. BVM susceptibility was maintained by SP1-Q6A, -Q6H and -T8A mutations. However, an SP1-V7A mutation conferred high-level BVM resistance, and SP1-V7M and T8Δ mutations conferred intermediate levels of BVM resistance. CONCLUSIONS: Future exploitation of the CA-SP1 cleavage site as an antiretroviral drug target will need to overcome the baseline variability in the SP1 region of Gag.