Cargando…
Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells
INTRODUCTION: The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873697/ https://www.ncbi.nlm.nih.gov/pubmed/20504287 http://dx.doi.org/10.1186/scrt6 |
_version_ | 1782181384826126336 |
---|---|
author | Cheng, Kang Follenzi, Antonia Surana, Manju Fleischer, Norman Gupta, Sanjeev |
author_facet | Cheng, Kang Follenzi, Antonia Surana, Manju Fleischer, Norman Gupta, Sanjeev |
author_sort | Cheng, Kang |
collection | PubMed |
description | INTRODUCTION: The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. METHODS: We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). RESULTS: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. CONCLUSIONS: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells. |
format | Text |
id | pubmed-2873697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28736972010-05-21 Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells Cheng, Kang Follenzi, Antonia Surana, Manju Fleischer, Norman Gupta, Sanjeev Stem Cell Res Ther Research INTRODUCTION: The ability to expand organ-specific stem/progenitor cells is critical for translational applications, although uncertainties often arise in identifying the lineage of expanded cells. Therefore, superior insights into lineage maintenance mechanisms will be helpful for cell/gene therapy. METHODS: We studied epithelial cells isolated from fetal human pancreas to assess their proliferation potential, changes in lineage markers during culture, and capacity for generating insulin-expressing beta cells. Cells were isolated by immunomagnetic sorting for epithelial cell adhesion molecule (EpCAM), and characterized for islet-associated transcription factors, hormones, and ductal markers. Further studies were performed after modification of cells with the catalytic subunit of human telomerase reverse transcriptase (hTERT). RESULTS: Fetal pancreatic progenitor cells efficiently formed primary cultures, although their replication capacity was limited. This was overcome by introduction and expression of hTERT with a retroviral vector, which greatly enhanced cellular replication in vitro. However, we found that during culture hTERT-modified pancreatic progenitor cells switched their phenotype with gain of additional mesodermal properties. This phenotypic switching was inhibited when a pancreas-duodenal homeobox (Pdx)-1 transgene was expressed in hTERT-modified cells with a lentiviral vector, along with inductive signaling through activin A and serum deprivation. This restored endocrine properties of hTERT-modified cells in vitro. Moreover, transplantation studies in immunodeficient mice verified the capacity of these cells for expressing insulin in vivo. CONCLUSIONS: Limited replication capacity of pancreatic endocrine progenitor cells was overcome by the hTERT mechanism, which should facilitate further studies of such cells, although mechanisms regulating switches between meso-endodermal fates of expanded cells will need to be controlled for developing specific applications. The availability of hTERT-expanded fetal pancreatic endocrine progenitor cells will be helpful for studying and recapitulating stage-specific beta lineage advancement in pluripotent stem cells. BioMed Central 2010-03-15 /pmc/articles/PMC2873697/ /pubmed/20504287 http://dx.doi.org/10.1186/scrt6 Text en Copyright ©2010 Cheng et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Cheng, Kang Follenzi, Antonia Surana, Manju Fleischer, Norman Gupta, Sanjeev Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title | Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title_full | Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title_fullStr | Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title_full_unstemmed | Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title_short | Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells |
title_sort | switching of mesodermal and endodermal properties in htert-modified and expanded fetal human pancreatic progenitor cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873697/ https://www.ncbi.nlm.nih.gov/pubmed/20504287 http://dx.doi.org/10.1186/scrt6 |
work_keys_str_mv | AT chengkang switchingofmesodermalandendodermalpropertiesinhtertmodifiedandexpandedfetalhumanpancreaticprogenitorcells AT follenziantonia switchingofmesodermalandendodermalpropertiesinhtertmodifiedandexpandedfetalhumanpancreaticprogenitorcells AT suranamanju switchingofmesodermalandendodermalpropertiesinhtertmodifiedandexpandedfetalhumanpancreaticprogenitorcells AT fleischernorman switchingofmesodermalandendodermalpropertiesinhtertmodifiedandexpandedfetalhumanpancreaticprogenitorcells AT guptasanjeev switchingofmesodermalandendodermalpropertiesinhtertmodifiedandexpandedfetalhumanpancreaticprogenitorcells |