Cargando…

The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations

It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Ge-Fei, Yang, Guang-Fu
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873998/
https://www.ncbi.nlm.nih.gov/pubmed/20505777
http://dx.doi.org/10.1371/journal.pone.0010742
_version_ 1782181427436060672
author Hao, Ge-Fei
Yang, Guang-Fu
author_facet Hao, Ge-Fei
Yang, Guang-Fu
author_sort Hao, Ge-Fei
collection PubMed
description It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a “molecular glue”. Besides, Phe351 acts as a “fastener” to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues.
format Text
id pubmed-2873998
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-28739982010-05-26 The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations Hao, Ge-Fei Yang, Guang-Fu PLoS One Research Article It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a “molecular glue”. Besides, Phe351 acts as a “fastener” to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues. Public Library of Science 2010-05-20 /pmc/articles/PMC2873998/ /pubmed/20505777 http://dx.doi.org/10.1371/journal.pone.0010742 Text en Hao, Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hao, Ge-Fei
Yang, Guang-Fu
The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title_full The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title_fullStr The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title_full_unstemmed The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title_short The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations
title_sort role of phe82 and phe351 in auxin-induced substrate perception by tir1 ubiquitin ligase: a novel insight from molecular dynamics simulations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873998/
https://www.ncbi.nlm.nih.gov/pubmed/20505777
http://dx.doi.org/10.1371/journal.pone.0010742
work_keys_str_mv AT haogefei theroleofphe82andphe351inauxininducedsubstrateperceptionbytir1ubiquitinligaseanovelinsightfrommoleculardynamicssimulations
AT yangguangfu theroleofphe82andphe351inauxininducedsubstrateperceptionbytir1ubiquitinligaseanovelinsightfrommoleculardynamicssimulations
AT haogefei roleofphe82andphe351inauxininducedsubstrateperceptionbytir1ubiquitinligaseanovelinsightfrommoleculardynamicssimulations
AT yangguangfu roleofphe82andphe351inauxininducedsubstrateperceptionbytir1ubiquitinligaseanovelinsightfrommoleculardynamicssimulations