Cargando…

Susceptibility to Calcium Dysregulation during Brain Aging

Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) home...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ashok, Bodhinathan, Karthik, Foster, Thomas C.
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874411/
https://www.ncbi.nlm.nih.gov/pubmed/20552053
http://dx.doi.org/10.3389/neuro.24.002.2009
Descripción
Sumario:Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.