Cargando…
Identifying essential genes in bacterial metabolic networks with machine learning methods
BACKGROUND: Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organism...
Autores principales: | Plaimas, Kitiporn, Eils, Roland, König, Rainer |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874528/ https://www.ncbi.nlm.nih.gov/pubmed/20438628 http://dx.doi.org/10.1186/1752-0509-4-56 |
Ejemplares similares
-
Machine learning based analyses on metabolic networks supports high-throughput knockout screens
por: Plaimas, Kitiporn, et al.
Publicado: (2008) -
DDA: A Novel Network-Based Scoring Method to Identify Disease–Disease Associations
por: Suratanee, Apichat, et al.
Publicado: (2015) -
Prediction of Human-Plasmodium vivax Protein
Associations From Heterogeneous Network Structures Based on Machine-Learning
Approach
por: Suratanee, Apichat, et al.
Publicado: (2021) -
Hybrid Deep Learning Based on a Heterogeneous Network Profile for Functional Annotations of Plasmodium falciparum Genes
por: Suratanee, Apichat, et al.
Publicado: (2021) -
Heterogeneous Network Model to Identify Potential Associations Between Plasmodium vivax and Human Proteins
por: Suratanee, Apichat, et al.
Publicado: (2020)