Cargando…

Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT) on human leukemia HL-60 cells

BACKGROUND: Polysaccharopeptide (PSP) from Coriolus versicolor (Yunzhi) is used as a supplementary cancer treatment in Asia. The present study aims to investigate whether PSP pre-treatment can increase the response of the human leukemia HL-60 cells to apoptosis induction by Camptothecin (CPT). METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Jennifer Man-Fan, Sit, Wai-Hung, Yang, Xiaotong, Jiang, Pingping, Wong, Leo Lap-Yan
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874562/
https://www.ncbi.nlm.nih.gov/pubmed/20423495
http://dx.doi.org/10.1186/1749-8546-5-16
Descripción
Sumario:BACKGROUND: Polysaccharopeptide (PSP) from Coriolus versicolor (Yunzhi) is used as a supplementary cancer treatment in Asia. The present study aims to investigate whether PSP pre-treatment can increase the response of the human leukemia HL-60 cells to apoptosis induction by Camptothecin (CPT). METHODS: We used bivariate bromodeoxyuridine/propidium iodide (BrdUrd/PI) flow cytometry analysis to measure the relative movement (RM) of the BrdUrd positively labeled cells and DNA synthesis time (Ts) on the HL-60 cell line. We used annexin V/PI flow cytometry analysis to quantify the viable, necrotic and apoptotic cells. The expression of cyclin E and cyclin B1 was determined with annexin V/PI flow cytometry and western blotting. Human peripheral blood mononuclear cells were used to test the cytotoxicity of PSP and CPT. RESULTS: PSP reduced cellular proliferation; inhibited cells progression through both S and G(2 )phase, reduced (3)H-thymidine uptake and prolonged DNA synthesis time (Ts) in HL-60 cells. PSP-pretreated cells enhanced the cytotoxicity of CPT. The sensitivity of cells to the cytotoxic effects of CPT was seen to be the highest in the S-phase and to a small extent of the G(2 )phase of the cell cycle. On the other hand, no cell death (measured by annexin V/PI) was evident with the normal human peripheral blood mononuclear cells with treatment of either PSP or CPT. CONCLUSION: The present study shows that PSP increases the sensitization of the HL-60 cells to undergo effective apoptotic cell death induced by CPT. The pattern of sensitivity of cancer cells is similar to that of HL-60 cells. PSP rapidly arrests and/or kills cells in S-phase and did not interfere with the anticancer action of CPT. PSP is a potential adjuvant to treat human leukemia as rapidly proliferating tumors is characterized by a high proportion of S-phase cells.