Cargando…
Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry
BACKGROUND: There is an increasing usage of ion mobility-mass spectrometry (IMMS) in proteomics. IMMS combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS). It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874804/ https://www.ncbi.nlm.nih.gov/pubmed/20380738 http://dx.doi.org/10.1186/1471-2105-11-182 |
_version_ | 1782181521045585920 |
---|---|
author | Wang, Bing Valentine, Steve Plasencia, Manolo Raghuraman, Sriram Zhang, Xiang |
author_facet | Wang, Bing Valentine, Steve Plasencia, Manolo Raghuraman, Sriram Zhang, Xiang |
author_sort | Wang, Bing |
collection | PubMed |
description | BACKGROUND: There is an increasing usage of ion mobility-mass spectrometry (IMMS) in proteomics. IMMS combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS). It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time that is determined by the collision cross-section of each peptide ion in a given experiment condition. A peptide ion's collision cross-section is related to the ion size and shape resulted from the peptide amino acid sequence and their modifications. This inherent relation between the drift time of peptide ion and peptide sequence indicates that the drift time of peptide ions can be used to infer peptide sequence and therefore, for peptide identification. RESULTS: This paper describes an artificial neural networks (ANNs) regression model for the prediction of peptide ion drift time in IMMS. Each peptide in this work was represented using three descriptors (i.e., molecular weight, sequence length and a two-dimensional sequence index). An ANN predictor consisting of four input nodes, three hidden nodes and one output node was constructed for peptide ion drift time prediction. For the model training and testing, a 10-fold cross-validation strategy was employed for three datasets each containing different charge states. Dataset one contains 212 singly-charged peptide ions, dataset two has 306 doubly-charged peptide ions, and dataset three has 77 triply-charged peptide ions. Our proposed method achieved 94.4%, 93.6% and 74.2% prediction accuracy for singly-, doubly- and triply-charged peptide ions, respectively. CONCLUSIONS: An ANN-based method has been developed for predicting the drift time of peptide ions in IMMS. The results achieved here demonstrate the effectiveness and efficiency of the prediction model. This work can enhance the confidence of protein identification by combining with current database search approaches for protein identification. |
format | Text |
id | pubmed-2874804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28748042010-05-24 Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry Wang, Bing Valentine, Steve Plasencia, Manolo Raghuraman, Sriram Zhang, Xiang BMC Bioinformatics Research article BACKGROUND: There is an increasing usage of ion mobility-mass spectrometry (IMMS) in proteomics. IMMS combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS). It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time that is determined by the collision cross-section of each peptide ion in a given experiment condition. A peptide ion's collision cross-section is related to the ion size and shape resulted from the peptide amino acid sequence and their modifications. This inherent relation between the drift time of peptide ion and peptide sequence indicates that the drift time of peptide ions can be used to infer peptide sequence and therefore, for peptide identification. RESULTS: This paper describes an artificial neural networks (ANNs) regression model for the prediction of peptide ion drift time in IMMS. Each peptide in this work was represented using three descriptors (i.e., molecular weight, sequence length and a two-dimensional sequence index). An ANN predictor consisting of four input nodes, three hidden nodes and one output node was constructed for peptide ion drift time prediction. For the model training and testing, a 10-fold cross-validation strategy was employed for three datasets each containing different charge states. Dataset one contains 212 singly-charged peptide ions, dataset two has 306 doubly-charged peptide ions, and dataset three has 77 triply-charged peptide ions. Our proposed method achieved 94.4%, 93.6% and 74.2% prediction accuracy for singly-, doubly- and triply-charged peptide ions, respectively. CONCLUSIONS: An ANN-based method has been developed for predicting the drift time of peptide ions in IMMS. The results achieved here demonstrate the effectiveness and efficiency of the prediction model. This work can enhance the confidence of protein identification by combining with current database search approaches for protein identification. BioMed Central 2010-04-11 /pmc/articles/PMC2874804/ /pubmed/20380738 http://dx.doi.org/10.1186/1471-2105-11-182 Text en Copyright ©2010 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Wang, Bing Valentine, Steve Plasencia, Manolo Raghuraman, Sriram Zhang, Xiang Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title | Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title_full | Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title_fullStr | Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title_full_unstemmed | Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title_short | Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
title_sort | artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874804/ https://www.ncbi.nlm.nih.gov/pubmed/20380738 http://dx.doi.org/10.1186/1471-2105-11-182 |
work_keys_str_mv | AT wangbing artificialneuralnetworksforthepredictionofpeptidedrifttimeinionmobilitymassspectrometry AT valentinesteve artificialneuralnetworksforthepredictionofpeptidedrifttimeinionmobilitymassspectrometry AT plasenciamanolo artificialneuralnetworksforthepredictionofpeptidedrifttimeinionmobilitymassspectrometry AT raghuramansriram artificialneuralnetworksforthepredictionofpeptidedrifttimeinionmobilitymassspectrometry AT zhangxiang artificialneuralnetworksforthepredictionofpeptidedrifttimeinionmobilitymassspectrometry |