Cargando…
Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor
G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This super-family of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In the current study we demonstr...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875175/ https://www.ncbi.nlm.nih.gov/pubmed/19648965 http://dx.doi.org/10.1038/onc.2009.225 |
_version_ | 1782181548003426304 |
---|---|
author | Solyakov, Lev Sayan, Emre Riley, Joan Pointon, Amy Tobin, Andrew B |
author_facet | Solyakov, Lev Sayan, Emre Riley, Joan Pointon, Amy Tobin, Andrew B |
author_sort | Solyakov, Lev |
collection | PubMed |
description | G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This super-family of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In the current study we demonstrate that a classical G(q/11)-coupled GPCR, the M(3)-muscarinic receptor, was able to regulate apoptosis via receptors that are endogenously expressed in the human neuroblastoma cell line SH-SY5Y and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M(3)-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, sub-cellular trafficking and modification of p53 in a manner that is in part dependent on the cell type. |
format | Text |
id | pubmed-2875175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-28751752010-05-24 Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor Solyakov, Lev Sayan, Emre Riley, Joan Pointon, Amy Tobin, Andrew B Oncogene Article G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This super-family of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In the current study we demonstrate that a classical G(q/11)-coupled GPCR, the M(3)-muscarinic receptor, was able to regulate apoptosis via receptors that are endogenously expressed in the human neuroblastoma cell line SH-SY5Y and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M(3)-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, sub-cellular trafficking and modification of p53 in a manner that is in part dependent on the cell type. 2009-08-03 2009-10-15 /pmc/articles/PMC2875175/ /pubmed/19648965 http://dx.doi.org/10.1038/onc.2009.225 Text en |
spellingShingle | Article Solyakov, Lev Sayan, Emre Riley, Joan Pointon, Amy Tobin, Andrew B Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title | Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title_full | Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title_fullStr | Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title_full_unstemmed | Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title_short | Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor |
title_sort | regulation of p53 expression, phosphorylation and sub-cellular localisation by a g-protein coupled receptor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875175/ https://www.ncbi.nlm.nih.gov/pubmed/19648965 http://dx.doi.org/10.1038/onc.2009.225 |
work_keys_str_mv | AT solyakovlev regulationofp53expressionphosphorylationandsubcellularlocalisationbyagproteincoupledreceptor AT sayanemre regulationofp53expressionphosphorylationandsubcellularlocalisationbyagproteincoupledreceptor AT rileyjoan regulationofp53expressionphosphorylationandsubcellularlocalisationbyagproteincoupledreceptor AT pointonamy regulationofp53expressionphosphorylationandsubcellularlocalisationbyagproteincoupledreceptor AT tobinandrewb regulationofp53expressionphosphorylationandsubcellularlocalisationbyagproteincoupledreceptor |