Cargando…
S100b Counteracts Neurodegeneration of Rat Cholinergic Neurons in Brain Slices after Oxygen-Glucose Deprivation
Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875695/ https://www.ncbi.nlm.nih.gov/pubmed/20508809 http://dx.doi.org/10.1155/2010/106123 |
Sumario: | Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b can counteract neurodegeneration of cholinergic neurons after oxygen-glucose deprivation (OGD) in organotypic brain slices of basal nucleus of Meynert. Our data showed that 3 days of OGD induced a marked decrease of cholinergic neurons (60% of control), which could be counteracted by 50 μg/mL recombinant S100b. The effect was dose and time dependent. Application of nerve growth factor or fibroblast growth factor-2 was less protective. C-fos-like immunoreactivity was enhanced 3 hours after OGD indicating metabolic stress. We conclude that S100b is a potent neuroprotective factor for cholinergic neurons during ischemic events. |
---|