Cargando…
Phylogeography and historical demography of the Pacific Sierra mackerel (Scomberomorus sierra) in the Eastern Pacific
BACKGROUND: Testing connectivity among populations of exploited marine fish is a main concern for the development of conservation strategies. Even though marine species are often considered to display low levels of population structure, barriers to dispersal found in the marine realm may restrict ge...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876057/ https://www.ncbi.nlm.nih.gov/pubmed/20438637 http://dx.doi.org/10.1186/1471-2156-11-34 |
Sumario: | BACKGROUND: Testing connectivity among populations of exploited marine fish is a main concern for the development of conservation strategies. Even though marine species are often considered to display low levels of population structure, barriers to dispersal found in the marine realm may restrict gene flow and cause genetic divergence of populations. The Pacific Sierra mackerel (Scomberomorus sierra) is a pelagic fish species distributed throughout the tropical and subtropical waters of the eastern Pacific. Seasonal spawning in different areas across the species range, as well as a limited dispersal, may result in a population genetic structure. Identification of genetically discrete units is important in the proper conservation of the fishery. RESULTS: Samples collected from the Eastern Pacific, including the areas of main abundance of the species, presented high levels of mtDNA genetic diversity and a highly significant divergence. At least two genetically discrete groups were detected in the northern (Sinaloa) and central areas (Oaxaca and Chiapas) of the species range, exhibiting slight genetic differences with respect to the samples collected in the southern region (Peru), together with a "chaotic genetic patchiness" pattern of differentiation and no evidence of isolation by distance. Historical demographic parameters supported the occurrence of past population expansions, whereas the divergence times between populations coincided with the occurrence of glacial maxima some 220 000 years ago. CONCLUSIONS: The population genetic structure detected for the Pacific Sierra mackerel is associated with a limited dispersal between the main abundance areas that are usually linked to the spawning sites of the species. Population expansions have coincided with glacial-interglacial episodes in the Pleistocene, but they may also be related to the increase in the SST and with upwelling areas in the EEP since the early Pleistocene. |
---|