Cargando…
The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan
BACKGROUND: The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A−) G6PD (glucose-6-phosphate dehydrogenase) d...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876136/ https://www.ncbi.nlm.nih.gov/pubmed/20520804 http://dx.doi.org/10.1371/journal.pmed.1000283 |
_version_ | 1782181669239783424 |
---|---|
author | Leslie, Toby Briceño, Marnie Mayan, Ismail Mohammed, Nasir Klinkenberg, Eveline Sibley, Carol Hopkins Whitty, Christopher J. M. Rowland, Mark |
author_facet | Leslie, Toby Briceño, Marnie Mayan, Ismail Mohammed, Nasir Klinkenberg, Eveline Sibley, Carol Hopkins Whitty, Christopher J. M. Rowland, Mark |
author_sort | Leslie, Toby |
collection | PubMed |
description | BACKGROUND: The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A−) G6PD (glucose-6-phosphate dehydrogenase) deficiency confers partial protection against severe P. falciparum. Recent evidence suggests that the deficiency also confers protection against P. vivax, which could explain its wide geographical distribution in human populations. The deficiency has a potentially serious interaction with antirelapse therapies (8-aminoquinolines such as primaquine). If the level of protection was sufficient, antirelapse therapy could become more widely available. We therefore tested the hypothesis that G6PD deficiency is protective against vivax malaria infection. METHODS AND FINDINGS: A case-control study design was used amongst Afghan refugees in Pakistan. The frequency of phenotypic and genotypic G6PD deficiency in individuals with vivax malaria was compared against controls who had not had malaria in the previous two years. Phenotypic G6PD deficiency was less common amongst cases than controls (cases: 4/372 [1.1%] versus controls 42/743 [5.7%]; adjusted odds ratio [AOR] 0.18 [95% confidence interval (CI) 0.06–0.52], p = 0.001). Genetic analysis demonstrated that the G6PD deficiency allele identified (Mediterranean type) was associated with protection in hemizygous deficient males (AOR = 0.12 [95% CI 0.02–0.92], p = 0.041). The deficiency was also protective in females carrying the deficiency gene as heterozygotes or homozygotes (pooled AOR = 0.37 [95% CI 0.15–0.94], p = 0.037). CONCLUSIONS: G6PD deficiency (Mediterranean type) conferred significant protection against vivax malaria infection in this population whether measured by phenotype or genotype, indicating a possible evolutionary role for vivax malaria in the selective retention of the G6PD deficiency trait in human populations. Further work is required on the genotypic protection associated with other types of G6PD deficiency and on developing simple point-of-care technologies to detect it before administering antirelapse therapy. Please see later in the article for the Editors' Summary |
format | Text |
id | pubmed-2876136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28761362010-06-02 The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan Leslie, Toby Briceño, Marnie Mayan, Ismail Mohammed, Nasir Klinkenberg, Eveline Sibley, Carol Hopkins Whitty, Christopher J. M. Rowland, Mark PLoS Med Research Article BACKGROUND: The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A−) G6PD (glucose-6-phosphate dehydrogenase) deficiency confers partial protection against severe P. falciparum. Recent evidence suggests that the deficiency also confers protection against P. vivax, which could explain its wide geographical distribution in human populations. The deficiency has a potentially serious interaction with antirelapse therapies (8-aminoquinolines such as primaquine). If the level of protection was sufficient, antirelapse therapy could become more widely available. We therefore tested the hypothesis that G6PD deficiency is protective against vivax malaria infection. METHODS AND FINDINGS: A case-control study design was used amongst Afghan refugees in Pakistan. The frequency of phenotypic and genotypic G6PD deficiency in individuals with vivax malaria was compared against controls who had not had malaria in the previous two years. Phenotypic G6PD deficiency was less common amongst cases than controls (cases: 4/372 [1.1%] versus controls 42/743 [5.7%]; adjusted odds ratio [AOR] 0.18 [95% confidence interval (CI) 0.06–0.52], p = 0.001). Genetic analysis demonstrated that the G6PD deficiency allele identified (Mediterranean type) was associated with protection in hemizygous deficient males (AOR = 0.12 [95% CI 0.02–0.92], p = 0.041). The deficiency was also protective in females carrying the deficiency gene as heterozygotes or homozygotes (pooled AOR = 0.37 [95% CI 0.15–0.94], p = 0.037). CONCLUSIONS: G6PD deficiency (Mediterranean type) conferred significant protection against vivax malaria infection in this population whether measured by phenotype or genotype, indicating a possible evolutionary role for vivax malaria in the selective retention of the G6PD deficiency trait in human populations. Further work is required on the genotypic protection associated with other types of G6PD deficiency and on developing simple point-of-care technologies to detect it before administering antirelapse therapy. Please see later in the article for the Editors' Summary Public Library of Science 2010-05-25 /pmc/articles/PMC2876136/ /pubmed/20520804 http://dx.doi.org/10.1371/journal.pmed.1000283 Text en Leslie et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Leslie, Toby Briceño, Marnie Mayan, Ismail Mohammed, Nasir Klinkenberg, Eveline Sibley, Carol Hopkins Whitty, Christopher J. M. Rowland, Mark The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title | The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title_full | The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title_fullStr | The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title_full_unstemmed | The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title_short | The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan |
title_sort | impact of phenotypic and genotypic g6pd deficiency on risk of plasmodium vivax infection: a case-control study amongst afghan refugees in pakistan |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876136/ https://www.ncbi.nlm.nih.gov/pubmed/20520804 http://dx.doi.org/10.1371/journal.pmed.1000283 |
work_keys_str_mv | AT leslietoby theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT bricenomarnie theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT mayanismail theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT mohammednasir theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT klinkenbergeveline theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT sibleycarolhopkins theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT whittychristopherjm theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT rowlandmark theimpactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT leslietoby impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT bricenomarnie impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT mayanismail impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT mohammednasir impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT klinkenbergeveline impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT sibleycarolhopkins impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT whittychristopherjm impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan AT rowlandmark impactofphenotypicandgenotypicg6pddeficiencyonriskofplasmodiumvivaxinfectionacasecontrolstudyamongstafghanrefugeesinpakistan |