Cargando…
In-silico prediction of blood-secretory human proteins using a ranking algorithm
BACKGROUND: Computational identification of blood-secretory proteins, especially proteins with differentially expressed genes in diseased tissues, can provide highly useful information in linking transcriptomic data to proteomic studies for targeted disease biomarker discovery in serum. RESULTS: A n...
Autores principales: | Liu, Qi, Cui, Juan, Yang, Qiang, Xu, Ying |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877692/ https://www.ncbi.nlm.nih.gov/pubmed/20465853 http://dx.doi.org/10.1186/1471-2105-11-250 |
Ejemplares similares
-
SecProCT: In Silico Prediction of Human Secretory Proteins Based on Capsule Network and Transformer
por: Du, Wei, et al.
Publicado: (2021) -
In silico Prediction of Human Secretory Proteins in Plasma Based on Discrete Firefly Optimization and Application to Cancer Biomarkers Identification
por: Zhang, Jian, et al.
Publicado: (2019) -
In Silico Identification of Specialized Secretory-Organelle Proteins in Apicomplexan Parasites and In Vivo Validation in Toxoplasma gondii
por: Chen, ZhongQiang, et al.
Publicado: (2008) -
Probabilistic prediction and ranking of human protein-protein interactions
por: Scott, Michelle S, et al.
Publicado: (2007) -
Predicting Disease Risk Using Bootstrap Ranking and Classification Algorithms
por: Manor, Ohad, et al.
Publicado: (2013)