Cargando…
Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition
Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877875/ https://www.ncbi.nlm.nih.gov/pubmed/20350571 http://dx.doi.org/10.1016/j.molbiopara.2010.03.012 |
_version_ | 1782181825857191936 |
---|---|
author | Wang, Ping Wang, Qi Yang, Yonghong Coward, James K. Nzila, Alexis Sims, Paul F.G. Hyde, John E. |
author_facet | Wang, Ping Wang, Qi Yang, Yonghong Coward, James K. Nzila, Alexis Sims, Paul F.G. Hyde, John E. |
author_sort | Wang, Ping |
collection | PubMed |
description | Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS–FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50 μM and 1.25 μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis–Menten equation, yielded apparent K(m) values of 0.88 μM for DHP, 22.8 μM for ATP and 5.97 μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent K(m) of 0.96 μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The K(i) value of an aryl phosphinate analogue against DHFS was 0.14 μM and for an alkyl phosphinate against FPGS 0.091 μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS–FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum. |
format | Text |
id | pubmed-2877875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-28778752010-06-10 Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition Wang, Ping Wang, Qi Yang, Yonghong Coward, James K. Nzila, Alexis Sims, Paul F.G. Hyde, John E. Mol Biochem Parasitol Article Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS–FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50 μM and 1.25 μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis–Menten equation, yielded apparent K(m) values of 0.88 μM for DHP, 22.8 μM for ATP and 5.97 μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent K(m) of 0.96 μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The K(i) value of an aryl phosphinate analogue against DHFS was 0.14 μM and for an alkyl phosphinate against FPGS 0.091 μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS–FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum. Elsevier/North-Holland Biomedical Press 2010-07 /pmc/articles/PMC2877875/ /pubmed/20350571 http://dx.doi.org/10.1016/j.molbiopara.2010.03.012 Text en © 2010 Elsevier B.V. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Wang, Ping Wang, Qi Yang, Yonghong Coward, James K. Nzila, Alexis Sims, Paul F.G. Hyde, John E. Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title | Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title_full | Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title_fullStr | Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title_full_unstemmed | Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title_short | Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
title_sort | characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877875/ https://www.ncbi.nlm.nih.gov/pubmed/20350571 http://dx.doi.org/10.1016/j.molbiopara.2010.03.012 |
work_keys_str_mv | AT wangping characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT wangqi characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT yangyonghong characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT cowardjamesk characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT nzilaalexis characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT simspaulfg characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition AT hydejohne characterisationofthebifunctionaldihydrofolatesynthasefolylpolyglutamatesynthasefromplasmodiumfalciparumapotentialnoveltargetforantimalarialantifolateinhibition |