Cargando…
WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis
BACKGROUND: Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data g...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878310/ https://www.ncbi.nlm.nih.gov/pubmed/20429928 http://dx.doi.org/10.1186/1471-2105-11-219 |
_version_ | 1782181851706687488 |
---|---|
author | Mo, Fan Mo, Qun Chen, Yuanyuan Goodlett, David R Hood, Leroy Omenn, Gilbert S Li, Song Lin, Biaoyang |
author_facet | Mo, Fan Mo, Qun Chen, Yuanyuan Goodlett, David R Hood, Leroy Omenn, Gilbert S Li, Song Lin, Biaoyang |
author_sort | Mo, Fan |
collection | PubMed |
description | BACKGROUND: Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification. RESULTS: We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline. CONCLUSIONS: We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant. |
format | Text |
id | pubmed-2878310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28783102010-05-29 WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis Mo, Fan Mo, Qun Chen, Yuanyuan Goodlett, David R Hood, Leroy Omenn, Gilbert S Li, Song Lin, Biaoyang BMC Bioinformatics Software BACKGROUND: Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification. RESULTS: We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline. CONCLUSIONS: We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant. BioMed Central 2010-04-29 /pmc/articles/PMC2878310/ /pubmed/20429928 http://dx.doi.org/10.1186/1471-2105-11-219 Text en Copyright ©2010 Mo et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Mo, Fan Mo, Qun Chen, Yuanyuan Goodlett, David R Hood, Leroy Omenn, Gilbert S Li, Song Lin, Biaoyang WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title | WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title_full | WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title_fullStr | WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title_full_unstemmed | WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title_short | WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
title_sort | waveletquant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878310/ https://www.ncbi.nlm.nih.gov/pubmed/20429928 http://dx.doi.org/10.1186/1471-2105-11-219 |
work_keys_str_mv | AT mofan waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT moqun waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT chenyuanyuan waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT goodlettdavidr waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT hoodleroy waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT omenngilberts waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT lisong waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis AT linbiaoyang waveletquantanimprovedquantificationsoftwarebasedonwaveletsignalthresholddenoisingforlabeledquantitativeproteomicanalysis |