Cargando…
Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists
The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a gr...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880237/ https://www.ncbi.nlm.nih.gov/pubmed/20458472 http://dx.doi.org/10.1007/s00221-010-2279-2 |
_version_ | 1782181996623036416 |
---|---|
author | Maas, Huub Gregor, Robert J. Hodson-Tole, Emma F. Farrell, Brad J. English, Arthur W. Prilutsky, Boris I. |
author_facet | Maas, Huub Gregor, Robert J. Hodson-Tole, Emma F. Farrell, Brad J. English, Arthur W. Prilutsky, Boris I. |
author_sort | Maas, Huub |
collection | PubMed |
description | The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions. |
format | Text |
id | pubmed-2880237 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-28802372010-06-10 Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists Maas, Huub Gregor, Robert J. Hodson-Tole, Emma F. Farrell, Brad J. English, Arthur W. Prilutsky, Boris I. Exp Brain Res Research Article The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions. Springer-Verlag 2010-05-11 2010 /pmc/articles/PMC2880237/ /pubmed/20458472 http://dx.doi.org/10.1007/s00221-010-2279-2 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Research Article Maas, Huub Gregor, Robert J. Hodson-Tole, Emma F. Farrell, Brad J. English, Arthur W. Prilutsky, Boris I. Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title | Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title_full | Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title_fullStr | Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title_full_unstemmed | Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title_short | Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists |
title_sort | locomotor changes in length and emg activity of feline medial gastrocnemius muscle following paralysis of two synergists |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880237/ https://www.ncbi.nlm.nih.gov/pubmed/20458472 http://dx.doi.org/10.1007/s00221-010-2279-2 |
work_keys_str_mv | AT maashuub locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists AT gregorrobertj locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists AT hodsontoleemmaf locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists AT farrellbradj locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists AT englisharthurw locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists AT prilutskyborisi locomotorchangesinlengthandemgactivityoffelinemedialgastrocnemiusmusclefollowingparalysisoftwosynergists |