Cargando…
Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
INTRODUCTION: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by thr...
Autores principales: | Popovici, Vlad, Chen, Weijie, Gallas, Brandon G, Hatzis, Christos, Shi, Weiwei, Samuelson, Frank W, Nikolsky, Yuri, Tsyganova, Marina, Ishkin, Alex, Nikolskaya, Tatiana, Hess, Kenneth R, Valero, Vicente, Booser, Daniel, Delorenzi, Mauro, Hortobagyi, Gabriel N, Shi, Leming, Symmans, W Fraser, Pusztai, Lajos |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880423/ https://www.ncbi.nlm.nih.gov/pubmed/20064235 http://dx.doi.org/10.1186/bcr2468 |
Ejemplares similares
-
Characterization of DNA variants in the human kinome in breast cancer
por: Agarwal, Divyansh, et al.
Publicado: (2015) -
Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile
por: Zhao, Chen, et al.
Publicado: (2011) -
Reproducibility of Variant Calls in Replicate Next Generation Sequencing Experiments
por: Qi, Yuan, et al.
Publicado: (2015) -
Knowledge-based analysis of proteomics data
por: Bessarabova, Marina, et al.
Publicado: (2012) -
Lack of sufficiently strong informative features limits the potential of gene expression analysis as predictive tool for many clinical classification problems
por: Hess, Kenneth R, et al.
Publicado: (2011)