Cargando…
A step towards non-invasive characterization of the human frontal eye fields of individual subjects
BACKGROUND: Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880797/ https://www.ncbi.nlm.nih.gov/pubmed/20522261 http://dx.doi.org/10.1186/1753-4631-4-S1-S11 |
_version_ | 1782182051471949824 |
---|---|
author | Ioannides, Andreas A Fenwick, Peter BC Pitri, Elina Liu, Lichan |
author_facet | Ioannides, Andreas A Fenwick, Peter BC Pitri, Elina Liu, Lichan |
author_sort | Ioannides, Andreas A |
collection | PubMed |
description | BACKGROUND: Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject. METHODS: We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades. RESULTS: In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction. CONCLUSIONS: The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements. |
format | Text |
id | pubmed-2880797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28807972010-06-04 A step towards non-invasive characterization of the human frontal eye fields of individual subjects Ioannides, Andreas A Fenwick, Peter BC Pitri, Elina Liu, Lichan Nonlinear Biomed Phys Proceedings BACKGROUND: Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject. METHODS: We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades. RESULTS: In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction. CONCLUSIONS: The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements. BioMed Central 2010-06-03 /pmc/articles/PMC2880797/ /pubmed/20522261 http://dx.doi.org/10.1186/1753-4631-4-S1-S11 Text en Copyright ©2010 Ioannides et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Ioannides, Andreas A Fenwick, Peter BC Pitri, Elina Liu, Lichan A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title | A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title_full | A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title_fullStr | A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title_full_unstemmed | A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title_short | A step towards non-invasive characterization of the human frontal eye fields of individual subjects |
title_sort | step towards non-invasive characterization of the human frontal eye fields of individual subjects |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880797/ https://www.ncbi.nlm.nih.gov/pubmed/20522261 http://dx.doi.org/10.1186/1753-4631-4-S1-S11 |
work_keys_str_mv | AT ioannidesandreasa asteptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT fenwickpeterbc asteptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT pitrielina asteptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT liulichan asteptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT ioannidesandreasa steptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT fenwickpeterbc steptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT pitrielina steptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects AT liulichan steptowardsnoninvasivecharacterizationofthehumanfrontaleyefieldsofindividualsubjects |