Cargando…

Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays

BACKGROUND: Large scale microarray experiments are becoming increasingly routine, particularly those which track a number of different cell lines through time. This time-course information provides valuable insight into the dynamic mechanisms underlying the biological processes being observed. Howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Gillespie, Colin S, Lei, Guiyuan, Boys, Richard J, Greenall, Amanda, Wilkinson, Darren J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880961/
https://www.ncbi.nlm.nih.gov/pubmed/20302631
http://dx.doi.org/10.1186/1756-0500-3-81
_version_ 1782182061483753472
author Gillespie, Colin S
Lei, Guiyuan
Boys, Richard J
Greenall, Amanda
Wilkinson, Darren J
author_facet Gillespie, Colin S
Lei, Guiyuan
Boys, Richard J
Greenall, Amanda
Wilkinson, Darren J
author_sort Gillespie, Colin S
collection PubMed
description BACKGROUND: Large scale microarray experiments are becoming increasingly routine, particularly those which track a number of different cell lines through time. This time-course information provides valuable insight into the dynamic mechanisms underlying the biological processes being observed. However, proper statistical analysis of time-course data requires the use of more sophisticated tools and complex statistical models. FINDINGS: Using the open source CRAN and Bioconductor repositories for R, we provide example analysis and protocol which illustrate a variety of methods that can be used to analyse time-course microarray data. In particular, we highlight how to construct appropriate contrasts to detect differentially expressed genes and how to generate plausible pathways from the data. A maintained version of the R commands can be found at http://www.mas.ncl.ac.uk/~ncsg3/microarray/. CONCLUSIONS: CRAN and Bioconductor are stable repositories that provide a wide variety of appropriate statistical tools to analyse time course microarray data.
format Text
id pubmed-2880961
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28809612010-06-05 Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays Gillespie, Colin S Lei, Guiyuan Boys, Richard J Greenall, Amanda Wilkinson, Darren J BMC Res Notes Short Report BACKGROUND: Large scale microarray experiments are becoming increasingly routine, particularly those which track a number of different cell lines through time. This time-course information provides valuable insight into the dynamic mechanisms underlying the biological processes being observed. However, proper statistical analysis of time-course data requires the use of more sophisticated tools and complex statistical models. FINDINGS: Using the open source CRAN and Bioconductor repositories for R, we provide example analysis and protocol which illustrate a variety of methods that can be used to analyse time-course microarray data. In particular, we highlight how to construct appropriate contrasts to detect differentially expressed genes and how to generate plausible pathways from the data. A maintained version of the R commands can be found at http://www.mas.ncl.ac.uk/~ncsg3/microarray/. CONCLUSIONS: CRAN and Bioconductor are stable repositories that provide a wide variety of appropriate statistical tools to analyse time course microarray data. BioMed Central 2010-03-19 /pmc/articles/PMC2880961/ /pubmed/20302631 http://dx.doi.org/10.1186/1756-0500-3-81 Text en Copyright ©2010 Gillespie et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Short Report
Gillespie, Colin S
Lei, Guiyuan
Boys, Richard J
Greenall, Amanda
Wilkinson, Darren J
Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title_full Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title_fullStr Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title_full_unstemmed Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title_short Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays
title_sort analysing time course microarray data using bioconductor: a case study using yeast2 affymetrix arrays
topic Short Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880961/
https://www.ncbi.nlm.nih.gov/pubmed/20302631
http://dx.doi.org/10.1186/1756-0500-3-81
work_keys_str_mv AT gillespiecolins analysingtimecoursemicroarraydatausingbioconductoracasestudyusingyeast2affymetrixarrays
AT leiguiyuan analysingtimecoursemicroarraydatausingbioconductoracasestudyusingyeast2affymetrixarrays
AT boysrichardj analysingtimecoursemicroarraydatausingbioconductoracasestudyusingyeast2affymetrixarrays
AT greenallamanda analysingtimecoursemicroarraydatausingbioconductoracasestudyusingyeast2affymetrixarrays
AT wilkinsondarrenj analysingtimecoursemicroarraydatausingbioconductoracasestudyusingyeast2affymetrixarrays