Cargando…

Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response

BACKGROUND: Designing sustainable animal production systems that better balance productivity and resistance to disease is a major concern. In order to address questions related to immunity and resistance to disease in pig, it is necessary to increase knowledge on its immune system and to produce eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yu, Flori, Laurence, Lecardonnel, Jérome, Esquerré, Diane, Hu, Zhi-Liang, Teillaud, Angélique, Lemonnier, Gaëtan, Lefèvre, Francois, Oswald, Isabelle P, Rogel-Gaillard, Claire
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881026/
https://www.ncbi.nlm.nih.gov/pubmed/20459780
http://dx.doi.org/10.1186/1471-2164-11-292
_version_ 1782182076834906112
author Gao, Yu
Flori, Laurence
Lecardonnel, Jérome
Esquerré, Diane
Hu, Zhi-Liang
Teillaud, Angélique
Lemonnier, Gaëtan
Lefèvre, Francois
Oswald, Isabelle P
Rogel-Gaillard, Claire
author_facet Gao, Yu
Flori, Laurence
Lecardonnel, Jérome
Esquerré, Diane
Hu, Zhi-Liang
Teillaud, Angélique
Lemonnier, Gaëtan
Lefèvre, Francois
Oswald, Isabelle P
Rogel-Gaillard, Claire
author_sort Gao, Yu
collection PubMed
description BACKGROUND: Designing sustainable animal production systems that better balance productivity and resistance to disease is a major concern. In order to address questions related to immunity and resistance to disease in pig, it is necessary to increase knowledge on its immune system and to produce efficient tools dedicated to this species. RESULTS: A long-oligonucleotide-based chip referred to as SLA-RI/NRSP8-13K was produced by combining a generic set with a newly designed SLA-RI set that targets all annotated loci of the pig major histocompatibility complex (MHC) region (SLA complex) in both orientations as well as immunity genes outside the SLA complex. The chip was used to study the immune response of pigs following stimulation of porcine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) or a mixture of phorbol myristate acetate (PMA) and ionomycin for 24 hours. Transcriptome analysis revealed that ten times more genes were differentially expressed after PMA/ionomycin stimulation than after LPS stimulation. LPS stimulation induced a general inflammation response with over-expression of SAA1, pro-inflammatory chemokines IL8, CCL2, CXCL5, CXCL3, CXCL2 and CCL8 as well as genes related to oxidative processes (SOD2) and calcium pathways (S100A9 and S100A12). PMA/ionomycin stimulation induced a stronger up-regulation of T cell activation than of B cell activation with dominance toward a Th1 response, including IL2, CD69 and TNFRSF9 (tumor necrosis factor receptor superfamily, member 9) genes. In addition, a very intense repression of THBS1 (thrombospondin 1) was observed. Repression of MHC class I genes was observed after PMA/ionomycin stimulation despite an up-regulation of the gene cascade involved in peptide processing. Repression of MHC class II genes was observed after both stimulations. Our results provide preliminary data suggesting that antisense transcripts mapping to the SLA complex may have a role during immune response. CONCLUSION: The SLA-RI/NRSP8-13K chip was found to accurately decipher two distinct immune response activations of PBMCs indicating that it constitutes a valuable tool to further study immunity and resistance to disease in pig. The transcriptome analysis revealed specific and common features of the immune responses depending on the stimulation agent that increase knowledge on pig immunity.
format Text
id pubmed-2881026
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28810262010-06-05 Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response Gao, Yu Flori, Laurence Lecardonnel, Jérome Esquerré, Diane Hu, Zhi-Liang Teillaud, Angélique Lemonnier, Gaëtan Lefèvre, Francois Oswald, Isabelle P Rogel-Gaillard, Claire BMC Genomics Research Article BACKGROUND: Designing sustainable animal production systems that better balance productivity and resistance to disease is a major concern. In order to address questions related to immunity and resistance to disease in pig, it is necessary to increase knowledge on its immune system and to produce efficient tools dedicated to this species. RESULTS: A long-oligonucleotide-based chip referred to as SLA-RI/NRSP8-13K was produced by combining a generic set with a newly designed SLA-RI set that targets all annotated loci of the pig major histocompatibility complex (MHC) region (SLA complex) in both orientations as well as immunity genes outside the SLA complex. The chip was used to study the immune response of pigs following stimulation of porcine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) or a mixture of phorbol myristate acetate (PMA) and ionomycin for 24 hours. Transcriptome analysis revealed that ten times more genes were differentially expressed after PMA/ionomycin stimulation than after LPS stimulation. LPS stimulation induced a general inflammation response with over-expression of SAA1, pro-inflammatory chemokines IL8, CCL2, CXCL5, CXCL3, CXCL2 and CCL8 as well as genes related to oxidative processes (SOD2) and calcium pathways (S100A9 and S100A12). PMA/ionomycin stimulation induced a stronger up-regulation of T cell activation than of B cell activation with dominance toward a Th1 response, including IL2, CD69 and TNFRSF9 (tumor necrosis factor receptor superfamily, member 9) genes. In addition, a very intense repression of THBS1 (thrombospondin 1) was observed. Repression of MHC class I genes was observed after PMA/ionomycin stimulation despite an up-regulation of the gene cascade involved in peptide processing. Repression of MHC class II genes was observed after both stimulations. Our results provide preliminary data suggesting that antisense transcripts mapping to the SLA complex may have a role during immune response. CONCLUSION: The SLA-RI/NRSP8-13K chip was found to accurately decipher two distinct immune response activations of PBMCs indicating that it constitutes a valuable tool to further study immunity and resistance to disease in pig. The transcriptome analysis revealed specific and common features of the immune responses depending on the stimulation agent that increase knowledge on pig immunity. BioMed Central 2010-05-11 /pmc/articles/PMC2881026/ /pubmed/20459780 http://dx.doi.org/10.1186/1471-2164-11-292 Text en Copyright ©2010 Gao et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Gao, Yu
Flori, Laurence
Lecardonnel, Jérome
Esquerré, Diane
Hu, Zhi-Liang
Teillaud, Angélique
Lemonnier, Gaëtan
Lefèvre, Francois
Oswald, Isabelle P
Rogel-Gaillard, Claire
Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title_full Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title_fullStr Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title_full_unstemmed Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title_short Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response
title_sort transcriptome analysis of porcine pbmcs after in vitro stimulation by lps or pma/ionomycin using an expression array targeting the pig immune response
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881026/
https://www.ncbi.nlm.nih.gov/pubmed/20459780
http://dx.doi.org/10.1186/1471-2164-11-292
work_keys_str_mv AT gaoyu transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT florilaurence transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT lecardonneljerome transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT esquerrediane transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT huzhiliang transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT teillaudangelique transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT lemonniergaetan transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT lefevrefrancois transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT oswaldisabellep transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse
AT rogelgaillardclaire transcriptomeanalysisofporcinepbmcsafterinvitrostimulationbylpsorpmaionomycinusinganexpressionarraytargetingthepigimmuneresponse