Cargando…
Recognition of beta-structural motifs using hidden Markov models trained with simulated evolution
Motivation: One of the most successful methods to date for recognizing protein sequences that are evolutionarily related, has been profile hidden Markov models. However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in β-sheets. We thus explore met...
Autores principales: | Kumar, Anoop, Cowen, Lenore |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881384/ https://www.ncbi.nlm.nih.gov/pubmed/20529918 http://dx.doi.org/10.1093/bioinformatics/btq199 |
Ejemplares similares
-
Estimating genome-wide IBD sharing from SNP data via an efficient hidden Markov model of LD with application to gene mapping
por: Bercovici, Sivan, et al.
Publicado: (2010) -
Markov dynamic models for long-timescale protein motion
por: Chiang, Tsung-Han, et al.
Publicado: (2010) -
MOTIF-EM: an automated computational tool for identifying conserved regions in CryoEM structures
por: Saha, Mitul, et al.
Publicado: (2010) -
SPEX(2): automated concise extraction of spatial gene expression patterns from Fly embryo ISH images
por: Puniyani, Kriti, et al.
Publicado: (2010) -
Using semantic web rules to reason on an ontology of pseudogenes
por: Holford, Matthew E., et al.
Publicado: (2010)