Cargando…
Discovering transcriptional modules by Bayesian data integration
Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intui...
Autores principales: | Savage, Richard S., Ghahramani, Zoubin, Griffin, Jim E., de la Cruz, Bernard J., Wild, David L. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881394/ https://www.ncbi.nlm.nih.gov/pubmed/20529901 http://dx.doi.org/10.1093/bioinformatics/btq210 |
Ejemplares similares
-
A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data
por: Chen, Xiaoyu, et al.
Publicado: (2010) -
SPEX(2): automated concise extraction of spatial gene expression patterns from Fly embryo ISH images
por: Puniyani, Kriti, et al.
Publicado: (2010) -
Using semantic web rules to reason on an ontology of pseudogenes
por: Holford, Matthew E., et al.
Publicado: (2010) -
Multivariate multi-way analysis of multi-source data
por: Huopaniemi, Ilkka, et al.
Publicado: (2010) -
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
por: Yamanishi, Yoshihiro, et al.
Publicado: (2010)