Cargando…

Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow

BACKGROUND: Adipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been research...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Shu-Wen, Li, Xi, Zhang, You-You, Huang, Hai-Yan, Liu, Yuan, Sun, Xia, Tang, Qi-Qun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881898/
https://www.ncbi.nlm.nih.gov/pubmed/20459638
http://dx.doi.org/10.1186/1471-213X-10-47
Descripción
Sumario:BACKGROUND: Adipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been researched in murine pre-adipocyte models (i.e. 3T3-L1 and 3T3-F442A), revealing that growth-arrest pre-adipocytes undergo mitotic clonal expansion and that regulation of the differentiation process relies on the sequential expression of three key transcription factors (C/EBPβ, C/EBPα and PPARγ). However, the mechanisms underlying adipocyte differentiation from multipotent stem cells, particularly human mesenchymal stem cells (hBMSCs), remain poorly understood. This study investigated cell cycle regulation and the roles of C/EBPβ, C/EBPα and PPARγ during adipocyte differentiation from hBMSCs. RESULTS: Utilising a BrdU incorporation assay and manual cell counting it was demonstrated that induction of adipocyte differentiation in culture resulted in 3T3-L1 pre-adipocytes but not hBMSCs undergoing mitotic clonal expansion. Knock-down and over-expression assays revealed that C/EBPβ, C/EBPα and PPARγ were required for adipocyte differentiation from hBMSCs. C/EBPβ and C/EBPα individually induced adipocyte differentiation in the presence of inducers; PPARγ alone initiated adipocyte differentiation but the cells failed to differentiate fully. Therefore, the roles of these transcription factors during human adipocyte differentiation are different from their respective roles in mouse. CONCLUSIONS: The characteristics of hBMSCs during adipogenic differentiation are different from those of murine cells. These findings could be important in elucidating the mechanisms underlying human obesity further.