Cargando…
Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies
BACKGROUND: Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or auto...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882339/ https://www.ncbi.nlm.nih.gov/pubmed/20544033 http://dx.doi.org/10.1371/journal.pone.0011008 |
Sumario: | BACKGROUND: Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. METHODS: Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. SIGNIFICANCE: Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. |
---|