Cargando…
Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement
BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883552/ https://www.ncbi.nlm.nih.gov/pubmed/20548775 http://dx.doi.org/10.1371/journal.pone.0011042 |
_version_ | 1782182259505233920 |
---|---|
author | Wilson, Kerry Das, Mainak Wahl, Kathryn J. Colton, Richard J. Hickman, James |
author_facet | Wilson, Kerry Das, Mainak Wahl, Kathryn J. Colton, Richard J. Hickman, James |
author_sort | Wilson, Kerry |
collection | PubMed |
description | BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (½RT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and ½RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. CONCLUSIONS/SIGNIFICANCE: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications. |
format | Text |
id | pubmed-2883552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28835522010-06-14 Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement Wilson, Kerry Das, Mainak Wahl, Kathryn J. Colton, Richard J. Hickman, James PLoS One Research Article BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (½RT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and ½RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. CONCLUSIONS/SIGNIFICANCE: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications. Public Library of Science 2010-06-10 /pmc/articles/PMC2883552/ /pubmed/20548775 http://dx.doi.org/10.1371/journal.pone.0011042 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Wilson, Kerry Das, Mainak Wahl, Kathryn J. Colton, Richard J. Hickman, James Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title | Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title_full | Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title_fullStr | Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title_full_unstemmed | Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title_short | Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement |
title_sort | measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883552/ https://www.ncbi.nlm.nih.gov/pubmed/20548775 http://dx.doi.org/10.1371/journal.pone.0011042 |
work_keys_str_mv | AT wilsonkerry measurementofcontractilestressgeneratedbyculturedratmuscleonsiliconcantileversfortoxindetectionandmuscleperformanceenhancement AT dasmainak measurementofcontractilestressgeneratedbyculturedratmuscleonsiliconcantileversfortoxindetectionandmuscleperformanceenhancement AT wahlkathrynj measurementofcontractilestressgeneratedbyculturedratmuscleonsiliconcantileversfortoxindetectionandmuscleperformanceenhancement AT coltonrichardj measurementofcontractilestressgeneratedbyculturedratmuscleonsiliconcantileversfortoxindetectionandmuscleperformanceenhancement AT hickmanjames measurementofcontractilestressgeneratedbyculturedratmuscleonsiliconcantileversfortoxindetectionandmuscleperformanceenhancement |