Cargando…

Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex

The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Fei-Fei, Pratt, Emily B., Chen, Pei-Chun, Wang, Fang, Skach, William R., David, Larry L., Shyng, Show-Ling
Formato: Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883939/
https://www.ncbi.nlm.nih.gov/pubmed/20427569
http://dx.doi.org/10.1091/mbc.E10-02-0116
_version_ 1782182289329881088
author Yan, Fei-Fei
Pratt, Emily B.
Chen, Pei-Chun
Wang, Fang
Skach, William R.
David, Larry L.
Shyng, Show-Ling
author_facet Yan, Fei-Fei
Pratt, Emily B.
Chen, Pei-Chun
Wang, Fang
Skach, William R.
David, Larry L.
Shyng, Show-Ling
author_sort Yan, Fei-Fei
collection PubMed
description The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing K(ATP) channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with K(ATP) channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell K(ATP) channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type K(ATP) channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric K(ATP) channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane.
format Text
id pubmed-2883939
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-28839392010-08-30 Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex Yan, Fei-Fei Pratt, Emily B. Chen, Pei-Chun Wang, Fang Skach, William R. David, Larry L. Shyng, Show-Ling Mol Biol Cell Articles The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing K(ATP) channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with K(ATP) channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell K(ATP) channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type K(ATP) channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric K(ATP) channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane. The American Society for Cell Biology 2010-06-15 /pmc/articles/PMC2883939/ /pubmed/20427569 http://dx.doi.org/10.1091/mbc.E10-02-0116 Text en © 2010 by The American Society for Cell Biology
spellingShingle Articles
Yan, Fei-Fei
Pratt, Emily B.
Chen, Pei-Chun
Wang, Fang
Skach, William R.
David, Larry L.
Shyng, Show-Ling
Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title_full Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title_fullStr Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title_full_unstemmed Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title_short Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
title_sort role of hsp90 in biogenesis of the β-cell atp-sensitive potassium channel complex
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883939/
https://www.ncbi.nlm.nih.gov/pubmed/20427569
http://dx.doi.org/10.1091/mbc.E10-02-0116
work_keys_str_mv AT yanfeifei roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT prattemilyb roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT chenpeichun roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT wangfang roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT skachwilliamr roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT davidlarryl roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex
AT shyngshowling roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex