Cargando…
Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex
The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883939/ https://www.ncbi.nlm.nih.gov/pubmed/20427569 http://dx.doi.org/10.1091/mbc.E10-02-0116 |
_version_ | 1782182289329881088 |
---|---|
author | Yan, Fei-Fei Pratt, Emily B. Chen, Pei-Chun Wang, Fang Skach, William R. David, Larry L. Shyng, Show-Ling |
author_facet | Yan, Fei-Fei Pratt, Emily B. Chen, Pei-Chun Wang, Fang Skach, William R. David, Larry L. Shyng, Show-Ling |
author_sort | Yan, Fei-Fei |
collection | PubMed |
description | The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing K(ATP) channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with K(ATP) channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell K(ATP) channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type K(ATP) channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric K(ATP) channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane. |
format | Text |
id | pubmed-2883939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-28839392010-08-30 Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex Yan, Fei-Fei Pratt, Emily B. Chen, Pei-Chun Wang, Fang Skach, William R. David, Larry L. Shyng, Show-Ling Mol Biol Cell Articles The pancreatic β-cell ATP-sensitive potassium (K(ATP)) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. K(ATP) channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing K(ATP) channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with K(ATP) channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell K(ATP) channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type K(ATP) channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric K(ATP) channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane. The American Society for Cell Biology 2010-06-15 /pmc/articles/PMC2883939/ /pubmed/20427569 http://dx.doi.org/10.1091/mbc.E10-02-0116 Text en © 2010 by The American Society for Cell Biology |
spellingShingle | Articles Yan, Fei-Fei Pratt, Emily B. Chen, Pei-Chun Wang, Fang Skach, William R. David, Larry L. Shyng, Show-Ling Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title | Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title_full | Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title_fullStr | Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title_full_unstemmed | Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title_short | Role of Hsp90 in Biogenesis of the β-Cell ATP-sensitive Potassium Channel Complex |
title_sort | role of hsp90 in biogenesis of the β-cell atp-sensitive potassium channel complex |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883939/ https://www.ncbi.nlm.nih.gov/pubmed/20427569 http://dx.doi.org/10.1091/mbc.E10-02-0116 |
work_keys_str_mv | AT yanfeifei roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT prattemilyb roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT chenpeichun roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT wangfang roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT skachwilliamr roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT davidlarryl roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex AT shyngshowling roleofhsp90inbiogenesisofthebcellatpsensitivepotassiumchannelcomplex |