Cargando…
Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon
Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the f...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883948/ https://www.ncbi.nlm.nih.gov/pubmed/20427573 http://dx.doi.org/10.1091/mbc.E09-12-1060 |
_version_ | 1782182291466878976 |
---|---|
author | Fujita, Hidenobu Kida, Yuichiro Hagiwara, Masatoshi Morimoto, Fumiko Sakaguchi, Masao |
author_facet | Fujita, Hidenobu Kida, Yuichiro Hagiwara, Masatoshi Morimoto, Fumiko Sakaguchi, Masao |
author_sort | Fujita, Hidenobu |
collection | PubMed |
description | Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized. |
format | Text |
id | pubmed-2883948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-28839482010-08-30 Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon Fujita, Hidenobu Kida, Yuichiro Hagiwara, Masatoshi Morimoto, Fumiko Sakaguchi, Masao Mol Biol Cell Articles Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized. The American Society for Cell Biology 2010-06-15 /pmc/articles/PMC2883948/ /pubmed/20427573 http://dx.doi.org/10.1091/mbc.E09-12-1060 Text en © 2010 by The American Society for Cell Biology |
spellingShingle | Articles Fujita, Hidenobu Kida, Yuichiro Hagiwara, Masatoshi Morimoto, Fumiko Sakaguchi, Masao Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title | Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title_full | Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title_fullStr | Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title_full_unstemmed | Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title_short | Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon |
title_sort | positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883948/ https://www.ncbi.nlm.nih.gov/pubmed/20427573 http://dx.doi.org/10.1091/mbc.E09-12-1060 |
work_keys_str_mv | AT fujitahidenobu positivechargesoftranslocatingpolypeptidechainretrieveanupstreammarginalhydrophobicsegmentfromtheendoplasmicreticulumlumentothetranslocon AT kidayuichiro positivechargesoftranslocatingpolypeptidechainretrieveanupstreammarginalhydrophobicsegmentfromtheendoplasmicreticulumlumentothetranslocon AT hagiwaramasatoshi positivechargesoftranslocatingpolypeptidechainretrieveanupstreammarginalhydrophobicsegmentfromtheendoplasmicreticulumlumentothetranslocon AT morimotofumiko positivechargesoftranslocatingpolypeptidechainretrieveanupstreammarginalhydrophobicsegmentfromtheendoplasmicreticulumlumentothetranslocon AT sakaguchimasao positivechargesoftranslocatingpolypeptidechainretrieveanupstreammarginalhydrophobicsegmentfromtheendoplasmicreticulumlumentothetranslocon |