Cargando…

Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy

BACKGROUND: To evaluate the association between the clinical, dosimetric factors and severe acute radiation pneumonitis (SARP) in patients with locally advanced non-small cell lung cancer (LANSCLC) treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). METHODS: We analyzed...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Anhui, Zhu, Guangying, Wu, Hao, Yu, Rong, Li, Fuhai, Xu, Bo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883984/
https://www.ncbi.nlm.nih.gov/pubmed/20462424
http://dx.doi.org/10.1186/1748-717X-5-35
Descripción
Sumario:BACKGROUND: To evaluate the association between the clinical, dosimetric factors and severe acute radiation pneumonitis (SARP) in patients with locally advanced non-small cell lung cancer (LANSCLC) treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). METHODS: We analyzed 94 LANSCLC patients treated with concurrent chemotherapy and IMRT between May 2005 and September 2006. SARP was defined as greater than or equal 3 side effects and graded according to Common Terminology Criteria for Adverse Events (CTCAE) version 3.0. The clinical and dosimetric factors were analyzed. Univariate and multivariate logistic regression analyses were performed to evaluate the relationship between clinical, dosimetric factors and SARP. RESULTS: Median follow-up was 10.5 months (range 6.5-24). Of 94 patients, 11 (11.7%) developed SARP. Univariate analyses showed that the normal tissue complication probability (NTCP), mean lung dose (MLD), relative volumes of lung receiving more than a threshold dose of 5-60 Gy at increments of 5 Gy (V5-V60), chronic obstructive pulmonary disease (COPD) and Forced Expiratory Volume in the first second (FEV1) were associated with SARP (p < 0.05). In multivariate analysis, NTCP value (p = 0.001) and V10 (p = 0.015) were the most significant factors associated with SARP. The incidences of SARP in the group with NTCP > 4.2% and NTCP ≤4.2% were 43.5% and 1.4%, respectively (p < 0.01). The incidences of SARP in the group with V10 ≤50% and V10 >50% were 5.7% and 29.2%, respectively (p < 0.01). CONCLUSIONS: NTCP value and V10 are the useful indicators for predicting SARP in NSCLC patients treated with concurrent chemotherapy and IMRT.