Cargando…

Erythropoietin Amplifies Stroke-Induced Oligodendrogenesis in the Rat

BACKGROUND: Erythropoietin (EPO), a hematopoietic cytokine, enhances neurogenesis and angiogenesis during stroke recovery. In the present study, we examined the effect of EPO on oligodendrogenesis in a rat model of embolic focal cerebral ischemia. METHODOLOGY AND PRINCIPAL FINDINGS: Recombinant huma...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li, Chopp, Michael, Zhang, Rui Lan, Wang, Lei, Zhang, Jing, Wang, Ying, Toh, Yier, Santra, Manoranjan, Lu, Mei, Zhang, Zheng Gang
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884017/
https://www.ncbi.nlm.nih.gov/pubmed/20552017
http://dx.doi.org/10.1371/journal.pone.0011016
Descripción
Sumario:BACKGROUND: Erythropoietin (EPO), a hematopoietic cytokine, enhances neurogenesis and angiogenesis during stroke recovery. In the present study, we examined the effect of EPO on oligodendrogenesis in a rat model of embolic focal cerebral ischemia. METHODOLOGY AND PRINCIPAL FINDINGS: Recombinant human EPO (rhEPO) at a dose of 5,000 U/kg (n = 18) or saline (n = 18) was intraperitoneally administered daily for 7 days starting 24 h after stroke onset. Treatment with rhEPO augmented actively proliferating oligodendrocyte progenitor cells (OPCs) measured by NG2 immunoreactive cells within the peri-infarct white matter and the subventricular zone (SVZ), but did not protect against loss of myelinating oligodendrocytes measured by cyclic nucleotide phosphodiesterase (CNPase) positive cells 7 days after stroke. However, 28 and 42 days after stroke, treatment with rhEPO significantly increased myelinating oligodendrocytes and myelinated axons within the peri-infarct white matter. Using lentivirus to label subventricular zone (SVZ) neural progenitor cells, we found that in addition to the OPCs generated in the peri-infarct white matter, SVZ neural progenitor cells contributed to rhEPO-increased OPCs in the peri-infarct area. Using bromodeoxyuridine (BrdU) for birth-dating cells, we demonstrated that myelinating oligodendrocytes observed 28 days after stroke were derived from OPCs. Furthermore, rhEPO significantly improved neurological outcome 6 weeks after stroke. In vitro, rhEPO increased differentiation of adult SVZ neural progenitor cells into oligodendrocytes and enhanced immature oligodendrocyte cell proliferation. CONCLUSIONS: Our in vivo and in vitro data indicate that EPO amplifies stroke-induced oligodendrogenesis that could facilitate axonal re-myelination and lead to functional recovery after stroke.