Cargando…
Error margin analysis for feature gene extraction
BACKGROUND: Feature gene extraction is a fundamental issue in microarray-based biomarker discovery. It is normally treated as an optimization problem of finding the best predictive feature genes that can effectively and stably discriminate distinct types of disease conditions, e.g. tumors and normal...
Autores principales: | Chow, Chi Kin, Zhu, Hai Long, Lacy, Jessica, Kuo, Winston P |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885372/ https://www.ncbi.nlm.nih.gov/pubmed/20459827 http://dx.doi.org/10.1186/1471-2105-11-241 |
Ejemplares similares
-
Cancer characterization and feature set extraction by discriminative margin clustering
por: Munagala, Kamesh, et al.
Publicado: (2004) -
Method of computing direction-dependent margins for the development of consensus contouring guidelines
por: Lawrence, Liam S. P., et al.
Publicado: (2021) -
Random error units, extension of a novel method to express random error in epidemiological studies
por: Janszky, Imre, et al.
Publicado: (2019) -
Sensitivity analysis for random measurement error using regression calibration and simulation-extrapolation
por: Nab, Linda, et al.
Publicado: (2021) -
Deep mixed model for marginal epistasis detection and population stratification correction in genome-wide association studies
por: Wang, Haohan, et al.
Publicado: (2019)