Cargando…
The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila
MicroRNA (miRNA) biogenesis proceeds from a primary transcript (pri-miRNA) through the pre-miRNA into the mature miRNA. Here, we identify a role of the Caenorhabditis elegans nuclear export receptor XPO-1 and the cap-binding proteins CBP-20/NCBP-2 and CBP-80/NCBP-1 in this process. The RNA-mediated...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885935/ https://www.ncbi.nlm.nih.gov/pubmed/20436454 http://dx.doi.org/10.1038/emboj.2010.82 |
Sumario: | MicroRNA (miRNA) biogenesis proceeds from a primary transcript (pri-miRNA) through the pre-miRNA into the mature miRNA. Here, we identify a role of the Caenorhabditis elegans nuclear export receptor XPO-1 and the cap-binding proteins CBP-20/NCBP-2 and CBP-80/NCBP-1 in this process. The RNA-mediated interference of any of these genes causes retarded heterochronic phenotypes similar to those observed for animals with mutations in the let-7 miRNA or core miRNA machinery genes. Moreover, pre- and mature miRNAs become depleted, whereas primary miRNA transcripts accumulate. An involvement of XPO-1 in miRNA biogenesis is conserved in Drosophila, in which knockdown of Embargoed/XPO-1 or its chemical inhibition through leptomycin B causes pri-miRNA accumulation. Our findings demonstrate that XPO-1/Emb promotes the pri-miRNA-to-pre-miRNA processing and we propose that this function involves intranuclear transport and/or nuclear export of primary miRNAs. |
---|