Cargando…
Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids
BACKGROUND: It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not th...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886069/ https://www.ncbi.nlm.nih.gov/pubmed/20482864 http://dx.doi.org/10.1186/1471-2148-10-149 |
_version_ | 1782182435556950016 |
---|---|
author | Markert, Jeffrey A Schelly, Robert C Stiassny, Melanie LJ |
author_facet | Markert, Jeffrey A Schelly, Robert C Stiassny, Melanie LJ |
author_sort | Markert, Jeffrey A |
collection | PubMed |
description | BACKGROUND: It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood. RESULTS: We examined genetic and morphological divergence among populations of two narrowly endemic cichlid species, Teleogramma depressum and Lamprologus tigripictilis, from a 100 km stretch of the lower Congo River using both nDNA microsatellites and mtDNA markers along with coordinate-based morphological techniques. In L. tigripictilis, the strongest genetic break was concordant with measurable phenotypic divergence but no morphological disjunction was detected for T. depressum despite significant differentiation at mtDNA and nDNA microsatellite markers. CONCLUSIONS: The genetic markers revealed patterns of philopatry and estimates of genetic isolation that are among the highest reported for any African cichlid species over a comparable geographic scale. We hypothesize that the high levels of philopatry observed are generated and maintained by the extreme hydrology of the lower Congo River. |
format | Text |
id | pubmed-2886069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28860692010-06-16 Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids Markert, Jeffrey A Schelly, Robert C Stiassny, Melanie LJ BMC Evol Biol Research article BACKGROUND: It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood. RESULTS: We examined genetic and morphological divergence among populations of two narrowly endemic cichlid species, Teleogramma depressum and Lamprologus tigripictilis, from a 100 km stretch of the lower Congo River using both nDNA microsatellites and mtDNA markers along with coordinate-based morphological techniques. In L. tigripictilis, the strongest genetic break was concordant with measurable phenotypic divergence but no morphological disjunction was detected for T. depressum despite significant differentiation at mtDNA and nDNA microsatellite markers. CONCLUSIONS: The genetic markers revealed patterns of philopatry and estimates of genetic isolation that are among the highest reported for any African cichlid species over a comparable geographic scale. We hypothesize that the high levels of philopatry observed are generated and maintained by the extreme hydrology of the lower Congo River. BioMed Central 2010-05-19 /pmc/articles/PMC2886069/ /pubmed/20482864 http://dx.doi.org/10.1186/1471-2148-10-149 Text en Copyright ©2010 Markert et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Markert, Jeffrey A Schelly, Robert C Stiassny, Melanie LJ Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title | Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title_full | Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title_fullStr | Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title_full_unstemmed | Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title_short | Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids |
title_sort | genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower congo rapids |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886069/ https://www.ncbi.nlm.nih.gov/pubmed/20482864 http://dx.doi.org/10.1186/1471-2148-10-149 |
work_keys_str_mv | AT markertjeffreya geneticisolationandmorphologicaldivergencemediatedbyhighenergyrapidsintwocichlidgenerafromthelowercongorapids AT schellyrobertc geneticisolationandmorphologicaldivergencemediatedbyhighenergyrapidsintwocichlidgenerafromthelowercongorapids AT stiassnymelanielj geneticisolationandmorphologicaldivergencemediatedbyhighenergyrapidsintwocichlidgenerafromthelowercongorapids |