Cargando…
Pitfalls in haemodynamic monitoring based on the arterial pressure waveform
The accuracy of the arterial pressure-based cardiac output FloTrac-Vigileo system remains unacceptably low during haemodynamic instability. Data show that the measurement of cardiac output (CO) is strongly influenced by changes in factors that affect arterial blood pressure (ABP) - for example, vasc...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887100/ https://www.ncbi.nlm.nih.gov/pubmed/20236463 http://dx.doi.org/10.1186/cc8845 |
Sumario: | The accuracy of the arterial pressure-based cardiac output FloTrac-Vigileo system remains unacceptably low during haemodynamic instability. Data show that the measurement of cardiac output (CO) is strongly influenced by changes in factors that affect arterial blood pressure (ABP) - for example, vascular tone and compliance and the arterial site - independently of true changes in CO. Although in theory the autocalibration algorithm of FloTrac-Vigileo should adjust for those changes, the model undercompensates (or overcompensates) for prominent increases (or decreases) in vascular tone and compliance, making the system largely dependent on changes in ABP. These limitations make FloTrac-Vigileo accurate in stable haemodynamic conditions only, and until more robust algorithms and further validation studies become available, we should be aware that during haemodynamic instability or in extreme conditions of vasodilation or vasoconstriction, the measured CO may diverge from an independent bolus indicator dilution measurement, particularly if a peripheral artery is used. In these conditions, we advocate the use of transpulmonary indicator dilution via a femoral artery. |
---|