Cargando…
Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information
BACKGROUND: Most of the existing in silico phosphorylation site prediction systems use machine learning approach that requires preparing a good set of classification data in order to build the classification knowledge. Furthermore, phosphorylation is catalyzed by kinase enzymes and hence the kinase...
Autores principales: | Biswas, Ashis Kumer, Noman, Nasimul, Sikder, Abdur Rahman |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887807/ https://www.ncbi.nlm.nih.gov/pubmed/20492656 http://dx.doi.org/10.1186/1471-2105-11-273 |
Ejemplares similares
-
SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites
por: Bui, Van-Minh, et al.
Publicado: (2016) -
Pulse Detecting Genetic Circuit – A New Design Approach
por: Noman, Nasimul, et al.
Publicado: (2016) -
Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins
por: Jamal, Salma, et al.
Publicado: (2021) -
Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites
por: Rashid, Md. Mamunur, et al.
Publicado: (2020) -
Reverse engineering gene regulatory network from microarray data using linear time-variant model
por: Kabir, Mitra, et al.
Publicado: (2010)