Cargando…
Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887840/ https://www.ncbi.nlm.nih.gov/pubmed/20585446 http://dx.doi.org/10.1371/journal.pone.0011142 |
_version_ | 1782182595649339392 |
---|---|
author | Shi, Huoying Santander, Javier Brenneman, Karen E. Wanda, Soo-Young Wang, Shifeng Senechal, Patti Sun, Wei Roland, Kenneth L. Curtiss, Roy |
author_facet | Shi, Huoying Santander, Javier Brenneman, Karen E. Wanda, Soo-Young Wang, Shifeng Senechal, Patti Sun, Wei Roland, Kenneth L. Curtiss, Roy |
author_sort | Shi, Huoying |
collection | PubMed |
description | We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS(+) strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+) vaccines induced a balanced Th1/Th2 immune response while the RpoS(−) strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+) strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts. |
format | Text |
id | pubmed-2887840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28878402010-06-22 Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen Shi, Huoying Santander, Javier Brenneman, Karen E. Wanda, Soo-Young Wang, Shifeng Senechal, Patti Sun, Wei Roland, Kenneth L. Curtiss, Roy PLoS One Research Article We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS(+) strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+) vaccines induced a balanced Th1/Th2 immune response while the RpoS(−) strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+) strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts. Public Library of Science 2010-06-18 /pmc/articles/PMC2887840/ /pubmed/20585446 http://dx.doi.org/10.1371/journal.pone.0011142 Text en Shi et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shi, Huoying Santander, Javier Brenneman, Karen E. Wanda, Soo-Young Wang, Shifeng Senechal, Patti Sun, Wei Roland, Kenneth L. Curtiss, Roy Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title | Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title_full | Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title_fullStr | Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title_full_unstemmed | Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title_short | Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen |
title_sort | live recombinant salmonella typhi vaccines constructed to investigate the role of rpos in eliciting immunity to a heterologous antigen |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887840/ https://www.ncbi.nlm.nih.gov/pubmed/20585446 http://dx.doi.org/10.1371/journal.pone.0011142 |
work_keys_str_mv | AT shihuoying liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT santanderjavier liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT brennemankarene liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT wandasooyoung liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT wangshifeng liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT senechalpatti liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT sunwei liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT rolandkennethl liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen AT curtissroy liverecombinantsalmonellatyphivaccinesconstructedtoinvestigatetheroleofrposinelicitingimmunitytoaheterologousantigen |