Cargando…
A nuclear targeting system in Plasmodium falciparum
BACKGROUND: The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887881/ https://www.ncbi.nlm.nih.gov/pubmed/20470378 http://dx.doi.org/10.1186/1475-2875-9-126 |
_version_ | 1782182605462962176 |
---|---|
author | Wittayacom, Kanjana Uthaipibull, Chairat Kumpornsin, Krittikorn Tinikul, Ruchanok Kochakarn, Theerarat Songprakhon, Pucharee Chookajorn, Thanat |
author_facet | Wittayacom, Kanjana Uthaipibull, Chairat Kumpornsin, Krittikorn Tinikul, Ruchanok Kochakarn, Theerarat Songprakhon, Pucharee Chookajorn, Thanat |
author_sort | Wittayacom, Kanjana |
collection | PubMed |
description | BACKGROUND: The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the P. falciparum nucleus using an exogenous nuclear localization sequence is reported here. METHODS: To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP). The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for P. falciparum nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy. RESULTS: The nuclear localization sequence of Gal4 is functional in P. falciparum. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization. CONCLUSIONS: The Gal4 fusion technique enables specific transport of a protein of choice into the P. falciparum nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and P. falciparum. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues to research on the same mechanism in P. falciparum. |
format | Text |
id | pubmed-2887881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28878812010-06-19 A nuclear targeting system in Plasmodium falciparum Wittayacom, Kanjana Uthaipibull, Chairat Kumpornsin, Krittikorn Tinikul, Ruchanok Kochakarn, Theerarat Songprakhon, Pucharee Chookajorn, Thanat Malar J Methodology BACKGROUND: The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the P. falciparum nucleus using an exogenous nuclear localization sequence is reported here. METHODS: To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP). The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for P. falciparum nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy. RESULTS: The nuclear localization sequence of Gal4 is functional in P. falciparum. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization. CONCLUSIONS: The Gal4 fusion technique enables specific transport of a protein of choice into the P. falciparum nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and P. falciparum. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues to research on the same mechanism in P. falciparum. BioMed Central 2010-05-14 /pmc/articles/PMC2887881/ /pubmed/20470378 http://dx.doi.org/10.1186/1475-2875-9-126 Text en Copyright ©2010 Wittayacom et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Wittayacom, Kanjana Uthaipibull, Chairat Kumpornsin, Krittikorn Tinikul, Ruchanok Kochakarn, Theerarat Songprakhon, Pucharee Chookajorn, Thanat A nuclear targeting system in Plasmodium falciparum |
title | A nuclear targeting system in Plasmodium falciparum |
title_full | A nuclear targeting system in Plasmodium falciparum |
title_fullStr | A nuclear targeting system in Plasmodium falciparum |
title_full_unstemmed | A nuclear targeting system in Plasmodium falciparum |
title_short | A nuclear targeting system in Plasmodium falciparum |
title_sort | nuclear targeting system in plasmodium falciparum |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887881/ https://www.ncbi.nlm.nih.gov/pubmed/20470378 http://dx.doi.org/10.1186/1475-2875-9-126 |
work_keys_str_mv | AT wittayacomkanjana anucleartargetingsysteminplasmodiumfalciparum AT uthaipibullchairat anucleartargetingsysteminplasmodiumfalciparum AT kumpornsinkrittikorn anucleartargetingsysteminplasmodiumfalciparum AT tinikulruchanok anucleartargetingsysteminplasmodiumfalciparum AT kochakarntheerarat anucleartargetingsysteminplasmodiumfalciparum AT songprakhonpucharee anucleartargetingsysteminplasmodiumfalciparum AT chookajornthanat anucleartargetingsysteminplasmodiumfalciparum AT wittayacomkanjana nucleartargetingsysteminplasmodiumfalciparum AT uthaipibullchairat nucleartargetingsysteminplasmodiumfalciparum AT kumpornsinkrittikorn nucleartargetingsysteminplasmodiumfalciparum AT tinikulruchanok nucleartargetingsysteminplasmodiumfalciparum AT kochakarntheerarat nucleartargetingsysteminplasmodiumfalciparum AT songprakhonpucharee nucleartargetingsysteminplasmodiumfalciparum AT chookajornthanat nucleartargetingsysteminplasmodiumfalciparum |