Cargando…
An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animal...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Science Inc
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887988/ https://www.ncbi.nlm.nih.gov/pubmed/20308253 http://dx.doi.org/10.1113/jphysiol.2010.187112 |
_version_ | 1782182623932579840 |
---|---|
author | Stürzebecher, Annika S Hu, Jing Smith, Ewan St John Frahm, Silke Santos-Torres, Julio Kampfrath, Branka Auer, Sebastian Lewin, Gary R Ibañez-Tallon, Inés |
author_facet | Stürzebecher, Annika S Hu, Jing Smith, Ewan St John Frahm, Silke Santos-Torres, Julio Kampfrath, Branka Auer, Sebastian Lewin, Gary R Ibañez-Tallon, Inés |
author_sort | Stürzebecher, Annika S |
collection | PubMed |
description | Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 ± 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour. |
format | Text |
id | pubmed-2887988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Blackwell Science Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-28879882010-12-29 An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors Stürzebecher, Annika S Hu, Jing Smith, Ewan St John Frahm, Silke Santos-Torres, Julio Kampfrath, Branka Auer, Sebastian Lewin, Gary R Ibañez-Tallon, Inés J Physiol Neuroscience Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 ± 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour. Blackwell Science Inc 2010-05-15 2010-03-22 /pmc/articles/PMC2887988/ /pubmed/20308253 http://dx.doi.org/10.1113/jphysiol.2010.187112 Text en Journal compilation © 2010 The Physiological Society |
spellingShingle | Neuroscience Stürzebecher, Annika S Hu, Jing Smith, Ewan St John Frahm, Silke Santos-Torres, Julio Kampfrath, Branka Auer, Sebastian Lewin, Gary R Ibañez-Tallon, Inés An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title | An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title_full | An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title_fullStr | An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title_full_unstemmed | An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title_short | An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
title_sort | in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887988/ https://www.ncbi.nlm.nih.gov/pubmed/20308253 http://dx.doi.org/10.1113/jphysiol.2010.187112 |
work_keys_str_mv | AT sturzebecherannikas aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT hujing aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT smithewanstjohn aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT frahmsilke aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT santostorresjulio aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT kampfrathbranka aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT auersebastian aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT lewingaryr aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT ibaneztallonines aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT sturzebecherannikas invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT hujing invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT smithewanstjohn invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT frahmsilke invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT santostorresjulio invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT kampfrathbranka invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT auersebastian invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT lewingaryr invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors AT ibaneztallonines invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors |