Cargando…

An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors

Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Stürzebecher, Annika S, Hu, Jing, Smith, Ewan St John, Frahm, Silke, Santos-Torres, Julio, Kampfrath, Branka, Auer, Sebastian, Lewin, Gary R, Ibañez-Tallon, Inés
Formato: Texto
Lenguaje:English
Publicado: Blackwell Science Inc 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887988/
https://www.ncbi.nlm.nih.gov/pubmed/20308253
http://dx.doi.org/10.1113/jphysiol.2010.187112
_version_ 1782182623932579840
author Stürzebecher, Annika S
Hu, Jing
Smith, Ewan St John
Frahm, Silke
Santos-Torres, Julio
Kampfrath, Branka
Auer, Sebastian
Lewin, Gary R
Ibañez-Tallon, Inés
author_facet Stürzebecher, Annika S
Hu, Jing
Smith, Ewan St John
Frahm, Silke
Santos-Torres, Julio
Kampfrath, Branka
Auer, Sebastian
Lewin, Gary R
Ibañez-Tallon, Inés
author_sort Stürzebecher, Annika S
collection PubMed
description Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 ± 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour.
format Text
id pubmed-2887988
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Blackwell Science Inc
record_format MEDLINE/PubMed
spelling pubmed-28879882010-12-29 An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors Stürzebecher, Annika S Hu, Jing Smith, Ewan St John Frahm, Silke Santos-Torres, Julio Kampfrath, Branka Auer, Sebastian Lewin, Gary R Ibañez-Tallon, Inés J Physiol Neuroscience Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 ± 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour. Blackwell Science Inc 2010-05-15 2010-03-22 /pmc/articles/PMC2887988/ /pubmed/20308253 http://dx.doi.org/10.1113/jphysiol.2010.187112 Text en Journal compilation © 2010 The Physiological Society
spellingShingle Neuroscience
Stürzebecher, Annika S
Hu, Jing
Smith, Ewan St John
Frahm, Silke
Santos-Torres, Julio
Kampfrath, Branka
Auer, Sebastian
Lewin, Gary R
Ibañez-Tallon, Inés
An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title_full An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title_fullStr An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title_full_unstemmed An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title_short An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
title_sort in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887988/
https://www.ncbi.nlm.nih.gov/pubmed/20308253
http://dx.doi.org/10.1113/jphysiol.2010.187112
work_keys_str_mv AT sturzebecherannikas aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT hujing aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT smithewanstjohn aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT frahmsilke aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT santostorresjulio aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT kampfrathbranka aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT auersebastian aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT lewingaryr aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT ibaneztallonines aninvivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT sturzebecherannikas invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT hujing invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT smithewanstjohn invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT frahmsilke invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT santostorresjulio invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT kampfrathbranka invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT auersebastian invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT lewingaryr invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors
AT ibaneztallonines invivotetheredtoxinapproachforthecellautonomousinactivationofvoltagegatedsodiumchannelcurrentsinnociceptors